Older adults show higher increases in lower-limb muscle activity during whole-body vibration exercise

2017 ◽  
Vol 52 ◽  
pp. 55-60 ◽  
Author(s):  
Karin Lienhard ◽  
Jordyn Vienneau ◽  
Sandro Nigg ◽  
Bernd Friesenbichler ◽  
Benno M. Nigg
2015 ◽  
Vol 29 (10) ◽  
pp. 2844-2853 ◽  
Author(s):  
Karin Lienhard ◽  
Jordyn Vienneau ◽  
Sandro Nigg ◽  
Olivier Meste ◽  
Serge S. Colson ◽  
...  

2019 ◽  
Vol 15 (1) ◽  
Author(s):  
Yeonkyeong Kang ◽  
Suho Park ◽  
Donggeon Lee ◽  
Sunhae Song ◽  
Myong-Ryol Choi ◽  
...  

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Jihye Kim ◽  
Hwang-Jae Lee ◽  
Su-Hyun Lee ◽  
Jungsoo Lee ◽  
Won Hyuk Chang ◽  
...  

Abstract Background Inclined walking requires more cardiopulmonary metabolic energy and muscle strength than flat-level walking. This study sought to investigate changes in lower-limb muscle activity and cardiopulmonary metabolic energy cost during treadmill walking with different inclination grades and to discern any correlation between these two measures in older adults. Methods Twenty-four healthy older adults (n = 11 males; mean age: 75.3 ± 4.0 years) participated. All participants walked on a treadmill that was randomly inclined at 0% (condition 1), 10% (condition 2), and 16% (condition 3) for five minutes each. Simultaneous measurements of lower-limb muscle activity and cardiopulmonary metabolic energy cost during inclined treadmill walking were collected. Measured muscles included the rectus abdominis (RA), erector spinae (ES), rectus femoris (RF), biceps femoris (BF), vastus medialis (VM), tibialis anterior (TA), medial head of the gastrocnemius (GCM), and soleus (SOL) muscles on the right side. Results As compared with 0% inclined treadmill gait, the 10% inclined treadmill gait increased the net cardiopulmonary metabolic energy cost by 22.9%, while the 16% inclined treadmill gait increased the net cardiopulmonary metabolic energy cost by 44.2%. In the stance phase, as the slope increased, activity was significantly increased in the RA, RF, VM, BF, GCM, and SOL muscles. In the swing phase, As the slope increased activity was significantly increased in the RA, RF, VM, BF, and TA muscles. SOL muscle activity was most relevant to the change in cardiopulmonary metabolic energy cost in the stance phase of inclined treadmill walking. The relationship between the increase in cardiopulmonary metabolic energy cost and changes in muscle activity was also significant in the VM, GCM, and RF. Conclusion This study demonstrated that changes in SOL, VM, GCM, and RA muscle activity had a significant relationship with cardiopulmonary metabolic energy cost increment during inclined treadmill walking. These results can be used as basic data for various gait-training programs and as an indicator in the development of assistive algorithms of wearable walking robots for older adults. Trial registration Clinical trials registration information: ClinicalTrials.gov Identifier: NCT04614857 (05/11/2020).


2020 ◽  
Vol 10 (2) ◽  
pp. 690 ◽  
Author(s):  
Kennedy Freitas Pereira Alves ◽  
Ana Paula de Lima Ferreira ◽  
Luana Caroline de Oliveira Parente ◽  
François Talles Medeiros Rodrigues ◽  
Thais Vitorino Marques ◽  
...  

The purpose of this study was to evaluate the response of a single whole-body vibration (WBV) training session to peripheral skin temperature and peripheral blood flow of older adults with type 2 diabetes. A double-blind, controlled clinical trial was conducted following the Consolidated Standards of Reporting Trials (CONSORT) guidelines. A single session of WBV (24 Hz; amplitude 4 mm; vibration time 45 s, with a series of eight repetitions with recovery between repetitions of 30 s; total time of 10 min) or sham vibration on the Kikos P204 Vibrating Platform was employed. To assess skin temperature, the FLIR E40bxs thermographic camera and the ultrasonic vascular Doppler for flow velocity were used. Evaluation occurred before and after a WBV or sham intervention. The sample consisted of three men and 17 women. In the WBV group, there was a decrease in the temperature from 29.7 °C (±1.83) to 26.6 °C (±2.27), with p = 0.01. Temperature following sham decreased from 28.6 °C (±1.84) to 26.3 °C (±2.49), with p = 0.01. Regarding blood flow, there was a decrease in the analyzed arteries, especially the left posterior tibial artery, where there was a statistically significant flow reduction from 27.1 m/s (±25.36) to 20.5 m/s (±19.66), post WBV (p = 0.01). In the sham group, an increased flow velocity was observed for all the arteries analyzed, except for the left dorsal artery. Immediately following a full-body vibration session, peripheral skin temperature and lower-limb blood flow tend to decrease in diabetic patients. However, from the design of study developed, we cannot infer the maintenance of this effect in the medium and long term.


2010 ◽  
Vol 103 (2) ◽  
pp. 1048-1056 ◽  
Author(s):  
Christopher J. Dakin ◽  
Billy L. Luu ◽  
Kees van den Doel ◽  
John Timothy Inglis ◽  
Jean-Sébastien Blouin

Galvanic vestibular stimulation (GVS) results in characteristic muscle and whole-body responses in humans maintaining standing balance. However, the relationship between these two vestibular-evoked responses remains elusive. This study seeks to determine whether mechanical filtering from conversion of lower-limb muscle activity to body sway, during standing balance, can be used to attenuate sway while maintaining biphasic lower-limb muscle responses using frequency-limited stochastic vestibular stimulation (SVS). We hypothesized that SVS deprived of frequencies <2 Hz would evoke biphasic muscle responses with minimal whole-body sway due to mechanical filtering of the higher-frequency muscle responses. Subjects were exposed to five stimulus bandwidths: two meant to induce sway responses (0–1 and 0–2 Hz) and three to dissociate vestibular-evoked muscle responses from whole-body sway (0–25, 1–25, and 2–25 Hz). Two main results emerged: 1) SVS-related sway was attenuated when frequencies <2 Hz were excluded, whereas multiphasic muscle and force responses were retained; and 2) the gain of the estimated transfer functions exhibited successive low-pass filtering of vestibular stimuli during conversion to muscle activity, anteroposterior (AP) moment, and sway. This successive low-pass filtering limited the transfer of signal power to frequencies <20 Hz in muscle activity, <5 Hz in AP moment, and <2 Hz in AP trunk sway. Consequently, the present results show that SVS delivered at frequencies >2 Hz to standing humans do not cause a destabilizing whole-body sway response but are associated with the typical biphasic lower-limb muscle responses.


Sign in / Sign up

Export Citation Format

Share Document