scholarly journals Higher medially-directed joint reaction forces are a characteristic of dysplastic hips: A comparative study using subject-specific musculoskeletal models

2017 ◽  
Vol 54 ◽  
pp. 80-87 ◽  
Author(s):  
Michael D. Harris ◽  
Bruce A. MacWilliams ◽  
K. Bo Foreman ◽  
Christopher L. Peters ◽  
Jeffrey A. Weiss ◽  
...  
2006 ◽  
Vol 24 ◽  
pp. S62-S63
Author(s):  
G. Lenaerts ◽  
I. Jonkers ◽  
G. Van der Perre ◽  
A. Spaepen

2010 ◽  
Vol 26 (4) ◽  
pp. 415-423 ◽  
Author(s):  
Yu-Jen Chen ◽  
Irving Scher ◽  
Christopher M. Powers

The purpose of this study was to describe an imaging based, subject specific model that was developed to quantify patellofemoral joint reaction forces (PFJRF’s). The secondary purpose was to test the model in a group of healthy individuals while performing various functional tasks. Twenty healthy subjects (10 males, 10 females) were recruited. All participants underwent two phases of data collection: 1) magnetic resonance imaging of the knee, patellofemoral joint, and thigh, and 2) kinematic, kinetic and EMG analysis during walking, running, stair ascent, and stair descent. Using data obtained from MRI, a subject specific representation of the extensor mechanism was created. Individual gait data were used to drive the model (via an optimization routine) and three-dimensional vasti muscle forces and subsequent three-dimensional PFJRF’s were computed. The average peak PFJRF was found to be highest during running (58.2 N/kg-bwt), followed by stair ascent (33.9 N/kg-bwt), stair descent (27.9 N/kg-bwt), and walking (10.1 N/kg-bwt). No differences were found between males and females. For all conditions, the direction of the PFJRF was always in the posterior, superior, and lateral directions. The posterior component of the PFJRF always had the greatest magnitude, followed by superior and lateral components. Our results indicate that estimates of the magnitude and direction of the PFJRF during functional tasks can be obtained using a 3D-imaging based model.


2014 ◽  
Vol 30 (4) ◽  
pp. 493-500 ◽  
Author(s):  
Yu-Jen Chen ◽  
Christopher M. Powers

The purpose of this study was to determine if persons with patellofemoral pain (PFP) exhibit differences in patellofemoral joint reaction forces (PFJRFs) during functional activities. Forty females (20 PFP, 20 controls) underwent two phases of data collection: (1) magnetic resonance imaging (MRI) and (2) biomechanical analysis during walking, running, stair ascent, and stair descent. A previously described three-dimensional model was used to estimate PFJRFs. Resultant PFJRFs and the orthogonal components were reported. The PFP group demonstrated lower peak resultant PFJRFs and posterior component and superior component of the PFJRFs compared with the control group across all conditions. However, the PFP group had a higher peak lateral component of the PFJRF in three out of the four conditions evaluated. The lower resultant PFJRFs suggested that individuals with PFP may employ strategies to minimize patellofemoral joint loading, but it did not result in diminished lateral forces acting on the patella.


1999 ◽  
Vol 121 (3) ◽  
pp. 316-322 ◽  
Author(s):  
G. Li ◽  
K. R. Kaufman ◽  
E. Y. S. Chao ◽  
H. E. Rubash

This paper examined the feasibility of using different optimization criteria in inverse dynamic optimization to predict antagonistic muscle forces and joint reaction forces during isokinetic flexion/extension and isometric extension exercises of the knee. Both quadriceps and hamstrings muscle groups were included in this study. The knee joint motion included flexion/extension, varus/valgus, and internal/external rotations. Four linear, nonlinear, and physiological optimization criteria were utilized in the optimization procedure. All optimization criteria adopted in this paper were shown to be able to predict antagonistic muscle contraction during flexion and extension of the knee. The predicted muscle forces were compared in temporal patterns with EMG activities (averaged data measured from five subjects). Joint reaction forces were predicted to be similar using all optimization criteria. In comparison with previous studies, these results suggested that the kinematic information involved in the inverse dynamic optimization plays an important role in prediction of the recruitment of antagonistic muscles rather than the selection of a particular optimization criterion. Therefore, it might be concluded that a properly formulated inverse dynamic optimization procedure should describe the knee joint rotation in three orthogonal planes.


2018 ◽  
Vol 140 (7) ◽  
Author(s):  
Quental Carlos ◽  
Azevedo Margarida ◽  
Ambrósio Jorge ◽  
Gonçalves S. B. ◽  
Folgado João

Abstract Most dynamic simulations are based on inverse dynamics, being the time-dependent physiological nature of the muscle properties rarely considered due to numerical challenges. Since the influence of muscle physiology on the consistency of inverse dynamics simulations remains unclear, the purpose of the present study is to evaluate the computational efficiency and biological validity of four musculotendon models that differ in the simulation of the muscle activation and contraction dynamics. Inverse dynamic analyses are performed using a spatial musculoskeletal model of the upper limb. The muscle force-sharing problem is solved for five repetitions of unloaded and loaded motions of shoulder abduction and shoulder flexion. The performance of the musculotendon models is evaluated by comparing muscle activation predictions with electromyography (EMG) signals, measured synchronously with motion for 11 muscles, and the glenohumeral joint reaction forces estimated numerically with those measured in vivo. The results show similar muscle activations for all muscle models. Overall, high cross-correlations are computed between muscle activations and the EMG signals measured for all movements analyzed, which provides confidence in the results. The glenohumeral joint reaction forces estimated compare well with those measured in vivo, but the influence of the muscle dynamics is found to be negligible. In conclusion, for slow-speed, standard movements of the upper limb, as those studied here, the activation and musculotendon contraction dynamics can be neglected in inverse dynamic analyses without compromising the prediction of muscle and joint reaction forces.


Sign in / Sign up

Export Citation Format

Share Document