Microstructural and mechanical evaluations of region segmentation methods in classifications of osteonecrosis

2020 ◽  
pp. 110208
Author(s):  
Chenglong Feng ◽  
Lizhen Wang ◽  
Peng Xu ◽  
Zhaowei Chu ◽  
Jie Yao ◽  
...  
2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Srinivas Talasila ◽  
Kirti Rawal ◽  
Gaurav Sethi

PurposeExtraction of leaf region from the plant leaf images is a prerequisite process for species recognition, disease detection and classification and so on, which are required for crop management. Several approaches were developed to implement the process of leaf region segmentation from the background. However, most of the methods were applied to the images taken under laboratory setups or plain background, but the application of leaf segmentation methods is vital to be used on real-time cultivation field images that contain complex backgrounds. So far, the efficient method that automatically segments leaf region from the complex background exclusively for black gram plant leaf images has not been developed.Design/methodology/approachExtracting leaf regions from the complex background is cumbersome, and the proposed PLRSNet (Plant Leaf Region Segmentation Net) is one of the solutions to this problem. In this paper, a customized deep network is designed and applied to extract leaf regions from the images taken from cultivation fields.FindingsThe proposed PLRSNet compared with the state-of-the-art methods and the experimental results evident that proposed PLRSNet yields 96.9% of Similarity Index/Dice, 94.2% of Jaccard/IoU, 98.55% of Correct Detection Ratio, Total Segmentation Error of 0.059 and Average Surface Distance of 3.037, representing a significant improvement over existing methods particularly taking into account of cultivation field images.Originality/valueIn this work, a customized deep learning network is designed for segmenting plant leaf region under complex background and named it as a PLRSNet.


2012 ◽  
Vol 3 (2) ◽  
pp. 253-255
Author(s):  
Raman Brar

Image segmentation plays a vital role in several medical imaging programs by assisting the delineation of physiological structures along with other parts. The objective of this research work is to segmentize human lung MRI (Medical resonance Imaging) images for early detection of cancer.Watershed Transform Technique is implemented as the Segmentation method in this work. Some comparative experiments using both directly applied watershed algorithm and after marking foreground and computed background segmentation methods show the improved lung segmentation accuracy in some image cases.


2020 ◽  
Vol 961 (7) ◽  
pp. 47-55
Author(s):  
A.G. Yunusov ◽  
A.J. Jdeed ◽  
N.S. Begliarov ◽  
M.A. Elshewy

Laser scanning is considered as one of the most useful and fast technologies for modelling. On the other hand, the size of scan results can vary from hundreds to several million points. As a result, the large volume of the obtained clouds leads to complication at processing the results and increases the time costs. One way to reduce the volume of a point cloud is segmentation, which reduces the amount of data from several million points to a limited number of segments. In this article, we evaluated effect on the performance, the accuracy of various segmentation methods and the geometric accuracy of the obtained models at density changes taking into account the processing time. The results of our experiment were compared with reference data in a form of comparative analysis. As a conclusion, some recommendations for choosing the best segmentation method were proposed.


Sign in / Sign up

Export Citation Format

Share Document