Segmentation In Medical Resonance images to extract the cancerous nodule for early diagnosis on cancer

2012 ◽  
Vol 3 (2) ◽  
pp. 253-255
Author(s):  
Raman Brar

Image segmentation plays a vital role in several medical imaging programs by assisting the delineation of physiological structures along with other parts. The objective of this research work is to segmentize human lung MRI (Medical resonance Imaging) images for early detection of cancer.Watershed Transform Technique is implemented as the Segmentation method in this work. Some comparative experiments using both directly applied watershed algorithm and after marking foreground and computed background segmentation methods show the improved lung segmentation accuracy in some image cases.

2020 ◽  
Vol 961 (7) ◽  
pp. 47-55
Author(s):  
A.G. Yunusov ◽  
A.J. Jdeed ◽  
N.S. Begliarov ◽  
M.A. Elshewy

Laser scanning is considered as one of the most useful and fast technologies for modelling. On the other hand, the size of scan results can vary from hundreds to several million points. As a result, the large volume of the obtained clouds leads to complication at processing the results and increases the time costs. One way to reduce the volume of a point cloud is segmentation, which reduces the amount of data from several million points to a limited number of segments. In this article, we evaluated effect on the performance, the accuracy of various segmentation methods and the geometric accuracy of the obtained models at density changes taking into account the processing time. The results of our experiment were compared with reference data in a form of comparative analysis. As a conclusion, some recommendations for choosing the best segmentation method were proposed.


Sensors ◽  
2020 ◽  
Vol 20 (17) ◽  
pp. 4979
Author(s):  
Dong Xiao ◽  
Xiwen Liu ◽  
Ba Tuan Le ◽  
Zhiwen Ji ◽  
Xiaoyu Sun

The ore fragment size on the conveyor belt of concentrators is not only the main index to verify the crushing process, but also affects the production efficiency, operation cost and even production safety of the mine. In order to get the size of ore fragments on the conveyor belt, the image segmentation method is a convenient and fast choice. However, due to the influence of dust, light and uneven color and texture, the traditional ore image segmentation methods are prone to oversegmentation and undersegmentation. In order to solve these problems, this paper proposes an ore image segmentation model called RDU-Net (R: residual connection; DU: DUNet), which combines the residual structure of convolutional neural network with DUNet model, greatly improving the accuracy of image segmentation. RDU-Net can adaptively adjust the receptive field according to the size and shape of different ore fragments, capture the ore edge of different shape and size, and realize the accurate segmentation of ore image. The experimental results show that compared with other U-Net and DUNet, the RDU-Net has significantly improved segmentation accuracy, and has better generalization ability, which can fully meet the requirements of ore fragment size detection in the concentrator.


2021 ◽  
Vol 10 (02) ◽  
pp. 319-325
Author(s):  
Nithyasree C ◽  
Stanley D ◽  
Subalakshmi K

Brain tumor extraction and its analysis are challenging tasks in medical image processing because brain image is complicated .Segmentation plays a very important role in the medical image processing.In that way MRI (magnetic resonance imaging )has become a useful medical diagnostic tool or the diagnosis o brain & other medical images.In this project, we are presenting a comparative study of three segmentation methods implemented or tumor detection .The method includes kmeans clustering using watershed algorithm . Optimized k-means and optimized c-means using genetic algorithm.


CONVERTER ◽  
2021 ◽  
pp. 219-227
Author(s):  
He Li, Et al.

Watershed algorithm is used widely in segmentation of droplet overlapped spots on water-sensitive test paper. However, the phenomenon of over-segmentation, however, is often caused by noise and subtle changes of gray levels in images. To further improve segmentation accuracy of watershed algorithm, this paper proposes a cyclic iterative watershed segmentation algorithm. Through statistical analysis and logistic regression, machine learning models were classified to extract overlapping droplets on test papers. Loop iterative processing of seed points segments overlapping droplets with appropriate thresholds. Compared with fixed threshold watershed segmentation, this method has higher precision and efficiency for spray droplet evaluation in pesticide application.


2019 ◽  
Vol 8 (12) ◽  
pp. 543
Author(s):  
Jun Wang ◽  
Lili Jiang ◽  
Yongji Wang ◽  
Qingwen Qi

Image segmentation technology, which can be used to completely partition a remote sensing image into non-overlapping regions in the image space, plays an indispensable role in high-resolution remote sensing image classification. Recently, the segmentation methods that combine segmenting with merging have attracted researchers’ attention. However, the existing methods ignore the fact that the same parameters must be applied to every segmented geo-object, and fail to consider the homogeneity between adjacent geo-objects. This paper develops an improved remote sensing image segmentation method to overcome this limitation. The proposed method is a hybrid method (split-and-merge). First, a watershed algorithm based on pre-processing is used to split the image to form initial segments. Second, the fast lambda-schedule algorithm based on a common boundary length penalty is used to merge the initial segments to obtain the final segmentation. For this experiment, we used GF-1 images with three spatial resolutions: 2 m, 8 m and 16 m. Six different test areas were chosen from the GF-1 images to demonstrate the effectiveness of the improved method, and the objective function (F (v, I)), intrasegment variance (v) and Moran’s index were used to evaluate the segmentation accuracy. The validation results indicated that the improved segmentation method produced satisfactory segmentation results for GF-1 images (average F (v, I) = 0.1064, v = 0.0428 and I = 0.17).


1987 ◽  
Vol 26 (04) ◽  
pp. 189-194
Author(s):  
S. S. El-Gamal

SummaryModern information technology offers new opportunities for the storage and manipulation of hospital information. A computer-based hospital information system, dedicated to urology and nephrology, was designed and developed in our center. It involves in principle the employment of a program that allows the analysis of non-restricted, non-codified texts for the retrieval and processing of clinical data and its operation by non-computer-specialized hospital staff.This Hospital Information System now plays a vital role in the efficient provision of a good quality service and is used in daily routine and research work in this hospital. This paper describes this specialized Hospital Information System.


2019 ◽  
pp. 10-23
Author(s):  
T. A. Akhadov ◽  
S. Yu. Guryakov ◽  
M. V. Ublinsky

For a long time, there was a need to apply magnetic resonance imaging (MRI) technique for lung visualization in clinical practice. The development of this method is stimulated by necessity of the emergence of an alternative to computed tomography, especially when radiation and injection of iodine-containing contrast agents are contraindicated or undesirable, for example, in pregnant women and children, people with intolerance to iodinated contrast. One of the reasons why lung MRI is still rarely used is lack of elaborated standardized protocols that would be adapted to clinical needs of medical society. This publication is a current literature review on the use of MRI in lung studies.


Machines ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 66
Author(s):  
Tianci Chen ◽  
Rihong Zhang ◽  
Lixue Zhu ◽  
Shiang Zhang ◽  
Xiaomin Li

In an orchard environment with a complex background and changing light conditions, the banana stalk, fruit, branches, and leaves are very similar in color. The fast and accurate detection and segmentation of a banana stalk are crucial to realize the automatic picking using a banana picking robot. In this paper, a banana stalk segmentation method based on a lightweight multi-feature fusion deep neural network (MFN) is proposed. The proposed network is mainly composed of encoding and decoding networks, in which the sandglass bottleneck design is adopted to alleviate the information a loss in high dimension. In the decoding network, a different sized dilated convolution kernel is used for convolution operation to make the extracted banana stalk features denser. The proposed network is verified by experiments. In the experiments, the detection precision, segmentation accuracy, number of parameters, operation efficiency, and average execution time are used as evaluation metrics, and the proposed network is compared with Resnet_Segnet, Mobilenet_Segnet, and a few other networks. The experimental results show that compared to other networks, the number of network parameters of the proposed network is significantly reduced, the running frame rate is improved, and the average execution time is shortened.


2021 ◽  
Vol 10 (2) ◽  
pp. 205846012098809
Author(s):  
Byeong H Oh ◽  
Hyeong C Moon ◽  
Aryun Kim ◽  
Hyeon J Kim ◽  
Chae J Cheong ◽  
...  

Background The pathology of Parkinson’s disease leads to morphological changes in brain structure. Currently, the progressive changes in gray matter volume that occur with time and are specific to patients with Parkinson’s disease, compared to healthy controls, remain unclear. High-tesla magnetic resonance imaging might be useful in differentiating neurological disorders by brain cortical changes. Purpose We aimed to investigate patterns in gray matter changes in patients with Parkinson’s disease by using an automated segmentation method with 7-tesla magnetic resonance imaging. Material and Methods High-resolution T1-weighted 7 tesla magnetic resonance imaging volumes of 24 hemispheres were acquired from 12 Parkinson’s disease patients and 12 age- and sex-matched healthy controls with median ages of 64.5 (range, 41–82) years and 60.5 (range, 25–74) years, respectively. Subgroup analysis was performed according to whether axial motor symptoms were present in the Parkinson’s disease patients. Cortical volume, cortical thickness, and subcortical volume were measured using a high-resolution image processing technique based on the Desikan-Killiany-Tourville atlas and an automated segmentation method (FreeSurfer version 6.0). Results After cortical reconstruction, in 7 tesla magnetic resonance imaging volume segmental analysis, compared with the healthy controls, the Parkinson’s disease patients showed global cortical atrophy, mostly in the prefrontal area (rostral middle frontal, superior frontal, inferior parietal lobule, medial orbitofrontal, rostral anterior cingulate area), and subcortical volume atrophy in limbic/paralimbic areas (fusiform, hippocampus, amygdala). Conclusion We first demonstrated that 7 tesla magnetic resonance imaging detects structural abnormalities in Parkinson’s disease patients compared to healthy controls using an automated segmentation method. Compared with the healthy controls, the Parkinson’s disease patients showed global prefrontal cortical atrophy and hippocampal area atrophy.


2019 ◽  
Vol 28 (2) ◽  
pp. 275-289 ◽  
Author(s):  
S. Pramod Kumar ◽  
Mrityunjaya V. Latte

Abstract The traditional segmentation methods available for pulmonary parenchyma are not accurate because most of the methods exclude nodules or tumors adhering to the lung pleural wall as fat. In this paper, several techniques are exhaustively used in different phases, including two-dimensional (2D) optimal threshold selection and 2D reconstruction for lung parenchyma segmentation. Then, lung parenchyma boundaries are repaired using improved chain code and Bresenham pixel interconnection. The proposed method of segmentation and repairing is fully automated. Here, 21 thoracic computer tomography slices having juxtapleural nodules and 115 lung parenchyma scans are used to verify the robustness and accuracy of the proposed method. Results are compared with the most cited active contour methods. Empirical results show that the proposed fully automated method for segmenting lung parenchyma is more accurate. The proposed method is 100% sensitive to the inclusion of nodules/tumors adhering to the lung pleural wall, the juxtapleural nodule segmentation is >98%, and the lung parenchyma segmentation accuracy is >96%.


Sign in / Sign up

Export Citation Format

Share Document