The Basic Principle and Its New Advances of Image Segmentation Methods Based on Graph Cuts

2012 ◽  
Vol 38 (6) ◽  
pp. 911 ◽  
Author(s):  
Song-Tao LIU ◽  
Fu-Liang YIN
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Changyong Li ◽  
Yongxian Fan ◽  
Xiaodong Cai

Abstract Background With the development of deep learning (DL), more and more methods based on deep learning are proposed and achieve state-of-the-art performance in biomedical image segmentation. However, these methods are usually complex and require the support of powerful computing resources. According to the actual situation, it is impractical that we use huge computing resources in clinical situations. Thus, it is significant to develop accurate DL based biomedical image segmentation methods which depend on resources-constraint computing. Results A lightweight and multiscale network called PyConvU-Net is proposed to potentially work with low-resources computing. Through strictly controlled experiments, PyConvU-Net predictions have a good performance on three biomedical image segmentation tasks with the fewest parameters. Conclusions Our experimental results preliminarily demonstrate the potential of proposed PyConvU-Net in biomedical image segmentation with resources-constraint computing.


2011 ◽  
Vol 07 (01) ◽  
pp. 155-171 ◽  
Author(s):  
H. D. CHENG ◽  
YANHUI GUO ◽  
YINGTAO ZHANG

Image segmentation is an important component in image processing, pattern recognition and computer vision. Many segmentation algorithms have been proposed. However, segmentation methods for both noisy and noise-free images have not been studied in much detail. Neutrosophic set (NS), a part of neutrosophy theory, studies the origin, nature, and scope of neutralities, as well as their interaction with different ideational spectra. However, neutrosophic set needs to be specified and clarified from a technical point of view for a given application or field to demonstrate its usefulness. In this paper, we apply neutrosophic set and define some operations. Neutrosphic set is integrated with an improved fuzzy c-means method and employed for image segmentation. A new operation, α-mean operation, is proposed to reduce the set indeterminacy. An improved fuzzy c-means (IFCM) is proposed based on neutrosophic set. The computation of membership and the convergence criterion of clustering are redefined accordingly. We have conducted experiments on a variety of images. The experimental results demonstrate that the proposed approach can segment images accurately and effectively. Especially, it can segment the clean images and the images having different gray levels and complex objects, which is the most difficult task for image segmentation.


2014 ◽  
Vol 556-562 ◽  
pp. 4206-4210
Author(s):  
Wei Liu ◽  
Xue Jun Xu

Interactive segmentation with graph cuts has become very popular and many priors have been introduced into graph cuts to improve the results. This paper proposed a method which uses the deformable part-based model to pre-label the seeds. First the deformable part-based model finds out the bounding box, then we can pre-label the seed point based on the assumption of compact shape. Our results show that our method can get more accurate result especially the appearance of the object and background are similar and the shape is compact.


2014 ◽  
Vol 945-949 ◽  
pp. 1899-1902
Author(s):  
Yuan Yuan Fan ◽  
Wei Jiang Li ◽  
Feng Wang

Image segmentation is one of the basic problems of image processing, also is the first essential and fundamental issue in the solar image analysis and pattern recognition. This paper summarizes systematically on the image segmentation techniques in the solar image retrieval and the recent applications of image segmentation. Then the merits and demerits of each method are discussed in this paper, in this way we can combine some methods for image segmentation to reach the better effects in astronomy. Finally, according to the characteristics of the solar image itself, the more appropriate image segmentation methods are summed up, and some remarks on the prospects and development of image segmentation are presented.


2013 ◽  
Author(s):  
Lei Li ◽  
Lianghai Jin ◽  
Enmin Song ◽  
Zhuoli Dong

2010 ◽  
Vol 43 (10) ◽  
pp. 3208-3218 ◽  
Author(s):  
Wenbing Tao ◽  
Feng Chang ◽  
Liman Liu ◽  
Hai Jin ◽  
Tianjiang Wang

2014 ◽  
Vol 1 (2) ◽  
pp. 62-74 ◽  
Author(s):  
Payel Roy ◽  
Srijan Goswami ◽  
Sayan Chakraborty ◽  
Ahmad Taher Azar ◽  
Nilanjan Dey

In the domain of image processing, image segmentation has become one of the key application that is involved in most of the image based operations. Image segmentation refers to the process of breaking or partitioning any image. Although, like several image processing operations, image segmentation also faces some problems and issues when segmenting process becomes much more complicated. Previously lot of work has proved that Rough-set theory can be a useful method to overcome such complications during image segmentation. The Rough-set theory helps in very fast convergence and in avoiding local minima problem, thereby enhancing the performance of the EM, better result can be achieved. During rough-set-theoretic rule generation, each band is individualized by using the fuzzy-correlation-based gray-level thresholding. Therefore, use of Rough-set in image segmentation can be very useful. In this paper, a summary of all previous Rough-set based image segmentation methods are described in detail and also categorized accordingly. Rough-set based image segmentation provides a stable and better framework for image segmentation.


Sign in / Sign up

Export Citation Format

Share Document