scholarly journals The influence of bicycle lean on maximal power output during sprint cycling

2021 ◽  
pp. 110595
Author(s):  
Ross D. Wilkinson ◽  
Rodger Kram
2021 ◽  
Author(s):  
Ross D. Wilkinson ◽  
Rodger Kram

Competitive cyclists typically sprint out of the saddle and alternately lean their bikes from side-to-side, away from the downstroke pedal. Yet, there is no direct evidence as to whether leaning the bicycle, or conversely, attempting to minimize lean, affects maximal power output during sprint cycling. Here, we modified a cycling ergometer so that it can lean from side-to-side but can also be locked to prevent lean. This modified ergometer made it possible to compare maximal 1-s crank power during non-seated, sprint cycling under three different conditions: locked (no lean), ad libitum lean, and minimal lean. We found that leaning the ergometer ad libitum did not enhance maximal 1-s crank power compared to a locked condition. However, trying to minimize ergometer lean decreased maximal 1-s crank power by an average of 5% compared to leaning ad libitum. IMU-derived measures of ergometer lean provided evidence that, on average, during the ad-lib condition, subjects leaned the ergometer away from the downstroke pedal as in overground cycling. This suggests that our ergometer provides a suitable emulation of lateral bicycle dynamics. Overall, we find that leaning a cycle ergometer ad libitum does not enhance maximal power output, and conversely, trying to minimize lean impairs maximal power output.


1983 ◽  
Vol 55 (1) ◽  
pp. 218-224 ◽  
Author(s):  
N. McCartney ◽  
G. J. Heigenhauser ◽  
N. L. Jones

We studied maximal torque-velocity relationships and fatigue during short-term maximal exercise on a constant velocity cycle ergometer in 13 healthy male subjects. Maximum torque showed an inverse linear relationship to crank velocity between 60 and 160 rpm, and a direct relationship to thigh muscle volume measured by computerized tomography. Peak torque per liter thigh muscle volume (PT, N X ml-1) was related to crank velocity (CV, rpm) in the following equation: PT = 61.7 - 0.234 CV (r = 0.99). Peak power output was a parabolic function of crank velocity in individual subjects, but maximal power output was achieved at varying crank velocities in different subjects. Fiber type distribution was measured in the two subjects showing the greatest differences and demonstrated that a high proportion of type II fibers may be one factor associated with a high crank velocity for maximal power output. The decline in average power during 30 s of maximal effort was least at 60 rpm (23.7 +/- 4.6% of initial maximal power) and greatest at 140 rpm (58.7 +/- 6.5%). At 60 rpm the decline in power over 30 s was inversely related to maximal oxygen uptake (ml X min-1 X kg-1) (r = 0.69). Total work performed and plasma lactate concentration 3 min after completion of 30-s maximum effort were similar for each crank velocity.


2017 ◽  
Vol 5 (2) ◽  
pp. e13119 ◽  
Author(s):  
Tom A. Manselin ◽  
Olof Södergård ◽  
Filip J. Larsen ◽  
Peter Lindholm

1996 ◽  
Vol 81 (1) ◽  
pp. 246-251 ◽  
Author(s):  
D. R. Knight ◽  
D. C. Poole ◽  
M. C. Hogan ◽  
D. E. Bebout ◽  
P. D. Wagner

The normal rate of blood lactate accumulation during exercise is increased by hypoxia and decreased by hyperoxia. It is not known whether these changes are primarily determined by the lactate release in locomotory muscles or other tissues. Eleven men performed cycle exercise at 20, 35, 50, 92, and 100% of maximal power output while breathing 12, 21, and 100% O2. Leg lactate release was calculated at each stage of exercise as the product of femoral venous blood flow (thermodilution method) and femoral arteriovenous difference in blood lactate concentrations. Regression analysis showed that leg lactate release accounted for 90% of the variability in mean arterial lactate concentration at 20-92% maximal power output. This relationship was described by a regression line with a slope of 0.28 +/- 0.02 min/l and a y-intercept of 1.06 +/- 0.38 mmol/l (r2 = 0.90). There was no effect of inspired O2 concentration on this relationship (P > 0.05). We conclude that during continuous incremental exercise to fatigue the effect of inspired O2 concentration on blood lactate accumulation is principally determined by the rate of net lactate release in blood vessels of the locomotory muscles.


Automatica ◽  
2021 ◽  
Vol 123 ◽  
pp. 109366
Author(s):  
Rui Fu ◽  
Amirhossein Taghvaei ◽  
Yongxin Chen ◽  
Tryphon T. Georgiou

2008 ◽  
Vol 42 (11) ◽  
pp. 568-571 ◽  
Author(s):  
H Kuipers ◽  
G A C V. Hullenaar ◽  
B M Pluim ◽  
S E Overbeek ◽  
O De Hon ◽  
...  

2020 ◽  
Vol 15 (1) ◽  
pp. 18-24
Author(s):  
Seiichiro Takei ◽  
Kuniaki Hirayama ◽  
Junichi Okada

Purpose: The optimal load for maximal power output during hang power cleans (HPCs) from a mechanical perspective is the 1-repetition-maximum (1RM) load; however, previous research has reported otherwise. The present study thus aimed to investigate the underlying factors that determine optimal load during HPCs. Methods: Eight competitive Olympic weight lifters performed HPCs at 40%, 60%, 70%, 80%, 90%, 95%, and 100% of their 1RM while the ground-reaction force and bar/body kinematics were simultaneously recorded. The success criterion during HPC was set above parallel squat at the receiving position. Results: Both peak power and relative peak power were maximized at 80% 1RM (3975.7 [439.1] W, 50.4 [6.6] W/kg, respectively). Peak force, force at peak power, and relative values tended to increase with heavier loads (P < .001), while peak system velocity and system velocity at peak power decreased significantly above 80% 1RM (P = .005 and .011, respectively). There were also significant decreases in peak bar velocity (P < .001) and bar displacement (P < .001) toward heavier loads. There was a strong positive correlation between peak bar velocity and bar displacement in 7 of 8 subjects (r > .90, P < .01). The knee joint angle at the receiving position fell below the quarter-squat position above 70% 1RM. Conclusions: Submaximal loads were indeed optimal for maximal power output for HPC when the success criterion was set above the parallel-squat position. However, when the success criterion was defined as the quarter-squat position, the optimal load became the 1RM load.


Sign in / Sign up

Export Citation Format

Share Document