competitive cyclists
Recently Published Documents


TOTAL DOCUMENTS

177
(FIVE YEARS 32)

H-INDEX

25
(FIVE YEARS 1)

2022 ◽  
Vol 3 ◽  
Author(s):  
Jared Ferguson ◽  
Amir Hadid ◽  
Yoram Epstein ◽  
Dennis Jensen

Purpose: Examine the effect of synthetic fabrics (SYN, 60% polyester: 40% nylon) vs. 100% cotton fabric (CTN) on the 20-km cycling time trial (20 kmCTT) performance of competitive cyclists and triathletes.Methods: In this randomized controlled crossover study, 15 adults (5 women) aged 29.6 ± 2.7 years (mean ± SE) with a peak rate of O2 consumption of 60.0 ± 2.0 ml/kg/min completed a 20 kmCTT under ambient laboratory conditions (24.3 ± 0.7°C and 17 ± 7% relative humidity) with a simulated wind of ~3 m/s while wearing SYN or CTN clothing ensembles. Both ensembles were of snowflake mesh bi-layer construction and consisted of a loose-fitting long-sleeved shirt with full-length trousers.Results: Participants maintained a significantly (p < 0.05) higher cycling speed and power output over the last 6-km of the 20 kmCTT while wearing the SYN vs. CTN ensemble (e.g., by 0.98 km/h and 18.4 watts at the 20-km mark). Consequently, 20 kmCTT duration was significantly reduced by 15.7 ± 6.8 sec or 0.8 ± 0.3% during SYN vs. CTN trials (p < 0.05). Improved 20 kmCTT performance with SYN vs. CTN clothing could not be explained by concurrent differences in esophageal temperature, sweat rate, ratings of perceived exertion and/or cardiometabolic responses to exercise. However, it was accompanied by significantly lower mean skin temperatures (~1°C) and more favorable ratings of perceived clothing comfort and thermal sensation during exercise.Conclusion: Under the experimental conditions of the current study, athletic clothing made of synthetic fabrics significantly improved the 20 kmCTT performance of endurance-trained athletes by optimizing selected thermoregulatory and perceptual responses to exercise.


Author(s):  
Dilara Sak ◽  
Taygun Dayı ◽  
Erkan Günay ◽  
Adile Öniz

Objective: Effects of regular physical activity on the human health is an important factor for the life quality parameters. The present study aimed to determine effects of moderate aerobic exercise on the life quality and human health. Materials and Methods: There were three groups (competitive cyclists, recreational cyclists and control) who voluntarily participated in this study. The cyclists of the National Bicycle Federation who could continue trainings during the Corona virus pandemic (n: 50), cyclists of the amateur clubs (n: 50) and 50 sedentary adults (≥19 years) were enrolled (n:150). World Health Organization Quality of Life Questionnaire Abbreviated Version - WHOQOL-BREF-TR was used to determine participants' life qualities. Results: Competitive cyclists trained for 13.33 (±7.24) hours per week and they had 4798 min/week MET values. Subgroup scores of WHQOL-BREF-TR (physical, psychological, social, environmental, national environment, general life quality and health) were found to be higher in competitive cyclists than others (recreational cyclists and sedentary adults). In addition, the values of competitive and amateur cyclists in the physical health level parameters were higher than the control group. Competitive cyclists had higher scores for psychological, social health and general life quality subgroups than others (p<0.05). Conclusion: The present study showed that if physical activity level increases, general health status and life quality increase. As a result of the study, it was found that moderate-intensity aerobic exercise (2600-4800 MET-min/week energy expenditure) between 7-13 hours a week supports the protection of general health and has positive effects on life quality. There is a need for future research to determine different exercise types, intensity, frequency and their effects on the general health status and life quality.


Author(s):  
Jonathon R. Fowles ◽  
Myles W. O’Brien ◽  
Kathryn G. Comeau ◽  
Bretton Thurston ◽  
Heather J. Petrie

2021 ◽  
Author(s):  
Ross D. Wilkinson ◽  
Rodger Kram

Competitive cyclists typically sprint out of the saddle and alternately lean their bikes from side-to-side, away from the downstroke pedal. Yet, there is no direct evidence as to whether leaning the bicycle, or conversely, attempting to minimize lean, affects maximal power output during sprint cycling. Here, we modified a cycling ergometer so that it can lean from side-to-side but can also be locked to prevent lean. This modified ergometer made it possible to compare maximal 1-s crank power during non-seated, sprint cycling under three different conditions: locked (no lean), ad libitum lean, and minimal lean. We found that leaning the ergometer ad libitum did not enhance maximal 1-s crank power compared to a locked condition. However, trying to minimize ergometer lean decreased maximal 1-s crank power by an average of 5% compared to leaning ad libitum. IMU-derived measures of ergometer lean provided evidence that, on average, during the ad-lib condition, subjects leaned the ergometer away from the downstroke pedal as in overground cycling. This suggests that our ergometer provides a suitable emulation of lateral bicycle dynamics. Overall, we find that leaning a cycle ergometer ad libitum does not enhance maximal power output, and conversely, trying to minimize lean impairs maximal power output.


2021 ◽  
Author(s):  
Francisco Javier Martínez Noguera ◽  
Pedro E. Alcaraz Ramón ◽  
Jorge Carlos Vivas ◽  
Linda H. Chung ◽  
Elena Marín Cascales ◽  
...  

2S-Hesperidin is the main flavonoid of orange (Citrus sinensis). Previous researches have pointed its effects in muscle development and fat accumulation reduction, although most of these results have not been...


Author(s):  
Ciaran O’Grady ◽  
Louis Passfield ◽  
James G. Hopker

Purpose: Rating of perceived exertion (RPE) as a training-intensity prescription has been extensively used by athletes and coaches. However, individual variability in the physiological response to exercise prescribed using RPE has not been investigated. Methods: Twenty well-trained competitive cyclists (male = 18, female = 2, maximum oxygen consumption =55.07 [11.06] mL·kg−1·min−1) completed 3 exercise trials each consisting of 9 randomized self-paced exercise bouts of either 1, 4, or 8 minutes at RPEs of 9, 13, and 17. Within-athlete variability (WAV) and between-athletes variability (BAV) in power and physiological responses were calculated using the coefficient of variation. Total variability was calculated as the ratio of WAV to BAV. Results: Increased RPEs were associated with higher power, heart rate, work, volume of expired oxygen (VO2), volume of expired carbon dioxide (VCO2), minute ventilation (VE), deoxyhemoglobin (ΔHHb) (P < .001), and lower tissue saturation index (ΔTSI%) and ΔO2Hb (oxyhaemoglobin; P < .001). At an RPE of 9, shorter durations resulted in lower VO2 (P < .05) and decreased ΔTSI%, and the ΔHHb increased as the duration increased (P < .05). At an RPE of 13, shorter durations resulted in lower VO2, VE, and percentage of maximum oxygen consumption (P < .001), as well as higher power, heart rate, ΔHHb (P < .001), and ΔTSI% (P < .05). At an RPE of 17, power (P < .001) and ΔTSI% (P < .05) increased as duration decreased. As intensity and duration increased, WAV and BAV in power, work, heart rate, VO2, VCO2, and VE decreased, and WAV and BAV in near-infrared spectroscopy increased. Conclusions: Self-paced intensity prescriptions of high effort and long duration result in the greatest consistency on both a within- and between-athletes basis.


Sign in / Sign up

Export Citation Format

Share Document