Tibiofemoral Bony Morphology Impacts the Knee Kinematics After Anterolateral Capsule Injury and Lateral Extraarticular Tenodesis Differently than Intact State

2021 ◽  
pp. 110857
Author(s):  
Sene K. Polamalu ◽  
João Novaretti ◽  
Volker Musahl ◽  
Richard E. Debski
2019 ◽  
Vol 47 (9) ◽  
pp. 2102-2109 ◽  
Author(s):  
Brian M. Devitt ◽  
Breck R. Lord ◽  
Andy Williams ◽  
Andrew A. Amis ◽  
Julian A. Feller

Background: Most lateral extra-articular tenodesis (LET) procedures rely on passing a strip of the iliotibial band (ITB) under the fibular (lateral) collateral ligament and fixing it proximally to the femur. The Ellison procedure is a distally fixed lateral extra-articular augmentation procedure with no proximal fixation of the ITB. It has the potential advantages of maintaining a dynamic element of control of knee rotation and avoiding the possibility of overconstraint. Hypothesis: The modified Ellison procedure would restore native knee kinematics after sectioning of the anterolateral capsule, and closure of the ITB defect would decrease rotational laxity of the knee. Study Design: Controlled laboratory study. Methods: Twelve fresh-frozen cadaveric knees were tested in a 6 degrees of freedom robotic system through 0° to 90° of knee flexion to assess anteroposterior, internal rotation (IR), and external rotation laxities. A simulated pivot shift (SPS) was performed at 0°, 15°, 30°, and 45° of flexion. Kinematic testing was performed in the intact knee and anterolateral capsule–injured knee and after the modified Ellison procedure, with and without closure of the ITB defect. A novel pulley system was used to load the ITB at 30 N for all testing states. Statistical analysis used repeated measures analyses of variance and paired t tests with Bonferroni adjustments. Results: Sectioning of the anterolateral capsule increased anterior drawer and IR during isolated displacement and with the SPS (mean increase, 2° of IR; P < .05). The modified Ellison procedure reduced both isolated and coupled IR as compared with the sectioned state ( P < .05). During isolated testing, IR was reduced close to that of the intact state with the modified Ellison procedure, except at 30° of knee flexion, when it was slightly overconstrained. During the SPS, IR with the closed modified Ellison was less than that in the intact state at 15° and 30° of flexion. No significant differences in knee kinematics were seen between the ITB defect open and closed. Conclusion: A distally fixed lateral augmentation procedure can closely restore knee laxities to native values in an anterolateral capsule–sectioned knee. Although the modified Ellison did result in overconstraint to isolated IR and coupled IR during SPS, this occurred only in the early range of knee flexion. Closure of the ITB defect had no effect on knee kinematics. Clinical Relevance: A distally fixed lateral extra-articular augmentation procedure provides an alternative to a proximally fixed LET and can reduce anterolateral laxity in the anterolateral capsule–injured knee and restore kinematics close to the intact state.


2021 ◽  
Vol 6 (1) ◽  
pp. 27
Author(s):  
Stefano Ghirardelli ◽  
Jessica L. Asay ◽  
Erika A. Leonardi ◽  
Tommaso Amoroso ◽  
Thomas P. Andriacchi ◽  
...  

Background: This study compares knee kinematics in two groups of patients who have undergone primary total knee arthroplasty (TKA) using two different modern designs: medially congruent (MC) and posterior-stabilized (PS). The aim of the study is to demonstrate only minimal differences between the groups. Methods: Ten TKA patients (4 PS, 6 MC) with successful clinical outcomes were evaluated through 3D knee kinematics analysis performed using a multicamera optoelectronic system and a force platform. Extracted kinematic data included knee flexion angle at heel-strike (KFH), peak midstance knee flexion angle (MSKFA), maximum and minimum knee adduction angle (KAA), and knee rotational angle at heel-strike. Data were compared with a group of healthy controls. Results: There were no differences in preferred walking speed between MC and PS groups, but we found consistent differences in knee function. At heel-strike, the knee tended to be more flexed in the PS group compared to the MC group; the MSKFA tended to be higher in the PS group compared to the MC group. There was a significant fluctuation in KAA during the swing phase in the PS group compared to the MC group, PS patients showed a higher peak knee flexion moment compared to MC patients, and the PS group had significantly less peak internal rotation moments than the MC group. Conclusions: Modern, third-generation TKA designs failed to reproduce normal knee kinematics. MC knees tended to reproduce a more natural kinematic pattern at heel-strike and during axial rotation, while PS knees showed better kinematics during mid-flexion.


2021 ◽  
Vol 11 ◽  
pp. 100068
Author(s):  
Guojiong Hu ◽  
Wenli Wang ◽  
Bin Chen ◽  
Hongping Zhi ◽  
Yudi Li ◽  
...  

PLoS ONE ◽  
2016 ◽  
Vol 11 (6) ◽  
pp. e0157010 ◽  
Author(s):  
Vincent Richard ◽  
Giuliano Lamberto ◽  
Tung-Wu Lu ◽  
Aurelio Cappozzo ◽  
Raphaël Dumas

2021 ◽  
Vol 11 (7) ◽  
pp. 592
Author(s):  
Sonja A. G. A. Grothues ◽  
Klaus Radermacher

The native femoral J-Curve is known to be a relevant determinant of knee biomechanics. Similarly, after total knee arthroplasty, the J-Curve of the femoral implant component is reported to have a high impact on knee kinematics. The shape of the native femoral J-Curve has previously been analyzed in 2D, however, the knee motion is not planar. In this study, we investigated the J-Curve in 3D by principal component analysis (PCA) and the resulting mean shapes and modes by geometric parameter analysis. Surface models of 90 cadaveric femora were available, 56 male, 32 female and two without respective information. After the translation to a bone-specific coordinate system, relevant contours of the femoral condyles were derived using virtual rotating cutting planes. For each derived contour, an extremum search was performed. The extremum points were used to define the 3D J-Curve of each condyle. Afterwards a PCA and a geometric parameter analysis were performed on the medial and lateral 3D J-Curves. The normalized measures of the mean shapes and the aspects of shape variation of the male and female 3D J-Curves were found to be similar. When considering both female and male J-Curves in a combined analysis, the first mode of the PCA primarily consisted of changes in size, highlighting size differences between female and male femora. Apart from changes in size, variation regarding aspect ratio, arc lengths, orientation, circularity, as well as regarding relative location of the 3D J-Curves was found. The results of this study are in agreement with those of previous 2D analyses on shape and shape variation of the femoral J-Curves. The presented 3D analysis highlights new aspects of shape variability, e.g., regarding curvature and relative location in the transversal plane. Finally, the analysis presented may support the design of (patient-specific) femoral implant components for TKA.


2017 ◽  
Vol 32 (2) ◽  
pp. 179-190 ◽  
Author(s):  
Gretchen B Salsich ◽  
Barbara Yemm ◽  
Karen Steger-May ◽  
Catherine E Lang ◽  
Linda R Van Dillen

Objective: To investigate whether a novel, task-specific training intervention that focused on correcting pain-producing movement patterns was feasible and whether it would improve hip and knee kinematics, pain, and function in women with patellofemoral pain. Design: Prospective, non-randomized, within-group, double baseline, feasibility intervention study. Subjects: A total of 25 women with patellofemoral pain were enrolled. Intervention: The intervention, delivered 2×/week for six weeks, consisted of supervised, high-repetition practice of daily weight-bearing and recreational activities. Activities were selected and progressed based on participants’ interest and ability to maintain optimal alignment without increasing pain. Main measures: Primary feasibility outcomes were recruitment, retention, adherence, and treatment credibility (Credibility/Expectancy Questionnaire). Secondary outcomes assessing intervention effects were hip and knee kinematics, pain (visual analog scale: current, average in past week, maximum in past week), and function (Patient-Specific Functional Scale). Results: A total of 25 participants were recruited and 23 were retained (92% retention). Self-reported average daily adherence was 79% and participants were able to perform their prescribed home program correctly (reduced hip and knee frontal plane angles) by the second intervention visit. On average, treatment credibility was rated 25 (out of 27) and expectancy was rated 22 (out of 27). Hip and knee kinematics, pain, and function improved following the intervention when compared to the control phase. Conclusion: Based on the feasibility outcomes and preliminary intervention effects, this task-specific training intervention warrants further investigation and should be evaluated in a larger, randomized clinical trial.


2014 ◽  
Vol 22 ◽  
pp. S104 ◽  
Author(s):  
L. Sosdian ◽  
F. Dobson ◽  
T.V. Wrigley ◽  
K. Paterson ◽  
K. Bennell ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document