Biomechanical Assessment of a Distally Fixed Lateral Extra-articular Augmentation Procedure in the Treatment of Anterolateral Rotational Laxity of the Knee

2019 ◽  
Vol 47 (9) ◽  
pp. 2102-2109 ◽  
Author(s):  
Brian M. Devitt ◽  
Breck R. Lord ◽  
Andy Williams ◽  
Andrew A. Amis ◽  
Julian A. Feller

Background: Most lateral extra-articular tenodesis (LET) procedures rely on passing a strip of the iliotibial band (ITB) under the fibular (lateral) collateral ligament and fixing it proximally to the femur. The Ellison procedure is a distally fixed lateral extra-articular augmentation procedure with no proximal fixation of the ITB. It has the potential advantages of maintaining a dynamic element of control of knee rotation and avoiding the possibility of overconstraint. Hypothesis: The modified Ellison procedure would restore native knee kinematics after sectioning of the anterolateral capsule, and closure of the ITB defect would decrease rotational laxity of the knee. Study Design: Controlled laboratory study. Methods: Twelve fresh-frozen cadaveric knees were tested in a 6 degrees of freedom robotic system through 0° to 90° of knee flexion to assess anteroposterior, internal rotation (IR), and external rotation laxities. A simulated pivot shift (SPS) was performed at 0°, 15°, 30°, and 45° of flexion. Kinematic testing was performed in the intact knee and anterolateral capsule–injured knee and after the modified Ellison procedure, with and without closure of the ITB defect. A novel pulley system was used to load the ITB at 30 N for all testing states. Statistical analysis used repeated measures analyses of variance and paired t tests with Bonferroni adjustments. Results: Sectioning of the anterolateral capsule increased anterior drawer and IR during isolated displacement and with the SPS (mean increase, 2° of IR; P < .05). The modified Ellison procedure reduced both isolated and coupled IR as compared with the sectioned state ( P < .05). During isolated testing, IR was reduced close to that of the intact state with the modified Ellison procedure, except at 30° of knee flexion, when it was slightly overconstrained. During the SPS, IR with the closed modified Ellison was less than that in the intact state at 15° and 30° of flexion. No significant differences in knee kinematics were seen between the ITB defect open and closed. Conclusion: A distally fixed lateral augmentation procedure can closely restore knee laxities to native values in an anterolateral capsule–sectioned knee. Although the modified Ellison did result in overconstraint to isolated IR and coupled IR during SPS, this occurred only in the early range of knee flexion. Closure of the ITB defect had no effect on knee kinematics. Clinical Relevance: A distally fixed lateral extra-articular augmentation procedure provides an alternative to a proximally fixed LET and can reduce anterolateral laxity in the anterolateral capsule–injured knee and restore kinematics close to the intact state.

2016 ◽  
Vol 45 (2) ◽  
pp. 347-354 ◽  
Author(s):  
Eivind Inderhaug ◽  
Joanna M. Stephen ◽  
Andy Williams ◽  
Andrew A. Amis

Background: Anterolateral soft tissue structures of the knee have a role in controlling anterolateral rotational laxity, and they may be damaged at the time of anterior cruciate ligament (ACL) ruptures. Purpose: To compare the kinematic effects of anterolateral operative procedures in combination with intra-articular ACL reconstruction for combined ACL plus anterolateral–injured knees. Study Design: Controlled laboratory study. Methods: Twelve cadaveric knees were tested in a 6 degrees of freedom rig using an optical tracking system to record the kinematics through 0° to 90° of knee flexion with no load, anterior drawer, internal rotation, and combined loading. Testing was first performed in ACL-intact, ACL-deficient, and combined ACL plus anterolateral–injured (distal deep insertions of the iliotibial band and the anterolateral ligament [ALL] and capsule cut) states. Thereafter, ACL reconstruction was performed alone and in combination with the following: modified MacIntosh tenodesis, modified Lemaire tenodesis passed both superficial and deep to the lateral collateral ligament, and ALL reconstruction. Anterolateral grafts were fixed at 30° of knee flexion with both 20 and 40 N of tension. Statistical analysis used repeated-measures analyses of variance and paired t tests with Bonferroni adjustments. Results: ACL reconstruction alone failed to restore native knee kinematics in combined ACL plus anterolateral–injured knees ( P < .05 for all). All combined reconstructions with 20 N of tension, except for ALL reconstruction ( P = .002-.01), restored anterior translation. With 40 N of tension, the superficial Lemaire and MacIntosh procedures overconstrained the anterior laxity in deep flexion. Only the deep Lemaire and MacIntosh procedures—with 20 N of tension—restored rotational kinematics to the intact state ( P > .05 for all), while the ALL underconstrained and the superficial Lemaire overconstrained internal rotation. The same procedures with 40 N of tension led to similar findings. Conclusion: In a combined ACL plus anterolateral–injured knee, ACL reconstruction alone failed to restore intact knee kinematics. The addition of either the deep Lemaire or MacIntosh tenodesis tensioned with 20 N, however, restored native knee kinematics. Clinical Relevance: The current study indicates that unaddressed anterolateral injuries, in the presence of an ACL deficiency, result in abnormal knee kinematics that is not restored if only treated with intra-articular ACL reconstruction. Both the modified MacIntosh and modified deep Lemaire tenodeses (with 20 N of tension) restored native knee kinematics at time zero.


2017 ◽  
Vol 5 (4_suppl4) ◽  
pp. 2325967117S0013
Author(s):  
Tobias Drenck ◽  
Christoph Domnick ◽  
Mirco Herbort ◽  
Michael Raschke ◽  
Karl-Heinz Frosch

Aims and Objectives: The posterolateral corner of the knee consists of different structures, which contribute to instability when damaged after injury or within surgery. Knowing the kinematic influences may help to improve clinical diagnostics and surgical techniques. The purpose was to determine static stabilizing effects of the posterolateral corner by dissecting stepwise all fibers and ligaments (the arcuat complex, AC) connected with the popliteus tendon (PLT) and the influence on lateral stability in the lateral collateral ligament (LCL) intact-state. Materials ans Methods: Kinematics were examined in 13 fresh-frozen human cadaveric knees using a robotic/UFS testing system with an optical tracking system. The knee kinematics were determined for 134 N anterior/posterior loads, 10 Nm valgus/varus loads and 5 Nm internal/external rotational loads in 0°, 20°, 30°, 60° and 90° of knee flexion. The posterolateral corner structures were consecutively dissected: The I.) intact knee joint, II.) with dissected posterior cruciate ligament, III.) meniscofibular/-tibial fibers, IV.) popliteofibular ligament, V.) popliteotibial fascicle (last structure of static AC), VI.) PLT and VII.) LCL. Results: The external rotation angle increased significantly by 2.6° to 7.9° (P<.05) in 0° to 90° of knee flexion and posterior tibial translation increased by 2.9 mm to 5.9 mm in 20° to 90° of knee flexion (P<.05) after cutting the AC/PLT structures (with intact LCL) in contrast to the PCL deficient knee. Differences between dissected static AC and dissected PLT were only found in 60° and 90° external rotation tests (by 2.1° and 3.1°; P<.05). In the other 28 kinematic tests, no significant differences between PLT and AC were found. Cutting the AC/PLT complex did not further decrease varus, valgus or anterior tibial stability in any flexion angle in comparison to the PCL dissected state. Conclusion: The arcuat complex is an important static stabilizer for external rotatory and posterior tibial loads of the knee, even in the lateral collateral ligament intact-state. After dissecting the major parts of the arcuat complex, the static stabilizing function of the popliteus tendon is lost. The arcuat complex has no varus-stabilizing function in the LCL-intact knee. The anatomy and function of these structures for external-rotational and posterior-translational stabilization should be considered for clinical diagnostics and when performing surgery in the posterolateral corner.


Author(s):  
Paul Arauz ◽  
Yun Peng ◽  
Tiffany Castillo ◽  
Christian Klemt ◽  
Young-Min Kwon

AbstractThis is an experimental study. As current posterior-substituting (PS) total knee arthroplasties have been reported to incompletely restore intrinsic joint biomechanics of the healthy knee, the recently designed single axis radius PS knee system was introduced to increase posterior femoral translation and promote ligament isometry. As there is a paucity of data available regarding its ability to replicate healthy knee biomechanics, this study aimed to assess joint and articular contact kinematics as well as ligament isometry of the contemporary single axis radius PS knee system. Implant kinematics were measured from 11 cadaveric knees using an in vitro robotic testing system. In addition, medial collateral ligament (MCL) and lateral collateral ligament (LCL) forces were quantified under simulated functional loads during knee flexion for the contemporary PS knee system. Posterior femoral translation between the intact knee and the single axis radius PS knee system differed significantly (p < 0.05) at 60, 90, and 120 degrees of flexion. The LCL force at 60 degrees (9.06 ± 2.81 N) was significantly lower (p < 0.05) than those at 30, 90, and 120 degrees of flexion, while MCL forces did not differ significantly throughout the range of tested flexion angles. The results from this study suggest that although the contemporary single axis radius PS knee system has the potential to mimic the intact knee kinematics under muscle loading during flexion extension due to its design features, single axis radius PS knee system did not fully replicate posterior femoral translation and ligament isometry of the healthy knee during knee flexion.


2016 ◽  
Vol 45 (4) ◽  
pp. 849-855 ◽  
Author(s):  
Daniel Guenther ◽  
Amir A. Rahnemai-Azar ◽  
Kevin M. Bell ◽  
Sebastián Irarrázaval ◽  
Freddie H. Fu ◽  
...  

Background: The function of the anterolateral capsule of the knee has not been clearly defined. However, the contribution of this region of the capsule to knee stability in comparison with other anterolateral structures can be determined by the relative force that each structure carries during loading of the knee. Purpose/Hypothesis: The purpose of this study was to determine the forces in the anterolateral structures of the intact and anterior cruciate ligament (ACL)–deficient knee in response to an anterior tibial load and internal tibial torque. It was hypothesized that the anterolateral capsule would not function like a traditional ligament (ie, transmitting forces only along its longitudinal axis). Study Design: Controlled laboratory study. Methods: Loads (134-N anterior tibial load and 7-N·m internal tibial torque) were applied continuously during flexion to 7 fresh-frozen cadaveric knees in the intact and ACL-deficient state using a robotic testing system. The lateral collateral ligament (LCL) and the anterolateral capsule were separated from the surrounding tissue and from each other. This was done by performing 3 vertical incisions: lateral to the LCL, medial to the LCL, and lateral to the Gerdy tubercle. Attachments of the LCL and anterolateral capsule were detached from the underlying tissue (ie, meniscus), leaving the insertions and origins intact. The force distribution in the anterolateral capsule, ACL, and LCL was then determined at 30°, 60°, and 90° of knee flexion using the principle of superposition. Results: In the intact knee, the force in the ACL in response to an anterior tibial load was greater than that in the other structures ( P < .001). However, in response to an internal tibial torque, no significant differences were found between the ACL, LCL, and forces transmitted between each region of the anterolateral capsule after capsule separation. The anterolateral capsule experienced smaller forces (~50% less) compared with the other structures ( P = .048). For the ACL-deficient knee in response to an anterior tibial load, the force transmitted between each region of the anterolateral capsule was 434% greater than was the force in the anterolateral capsule ( P < .001) and 54% greater than the force in the LCL ( P = .036) at 30° of flexion. In response to an internal tibial torque at 30°, 60°, or 90° of knee flexion, no significant differences were found between the force transmitted between each region of the anterolateral capsule and the LCL. The force in the anterolateral capsule was significantly smaller than that in the other structures at all knee flexion angles for both loading conditions ( P = .004 for anterior tibial load and P = .04 for internal tibial torque). Conclusion: The anterolateral capsule carries negligible forces in the longitudinal direction, and the forces transmitted between regions of the capsule were similar to the forces carried by the other structures at the knee, suggesting that it does not function as a traditional ligament. Thus, the anterolateral capsule should be considered a sheet of tissue. Clinical Relevance: Surgical repair techniques for the anterolateral capsule should restore the ability of the tissue to transmit forces between adjacent regions of the capsule rather than along its longitudinal axis.


2012 ◽  
Vol 21 (2) ◽  
pp. 144-150 ◽  
Author(s):  
Elisabeth Macrum ◽  
David Robert Bell ◽  
Michelle Boling ◽  
Michael Lewek ◽  
Darin Padua

Context:Limitations in gastrocnemius/soleus flexibility that restrict ankle dorsiflexion during dynamic tasks have been reported in individuals with patellofemoral pain (PFP) and are theorized to play a role in its development.Objective:To determine the effect of restricted ankle-dorsiflexion range of motion (ROM) on lower extremity kinematics and muscle activity (EMG) during a squat. The authors hypothesized that restricted ankle-dorsiflexion ROM would alter knee kinematics and lower extremity EMG during a squat.Design:Cross-sectional.Participants:30 healthy, recreationally active individuals without a history of lower extremity injury.Interventions:Each participant performed 7 trials of a double-leg squat under 2 conditions: a nowedge condition (NW) with the foot flat on the floor and a wedge condition (W) with a 12° forefoot angle to simulate reduced plantar-flexor flexibility.Main Outcome Measures:3-dimensional hip and knee kinematics, medial knee displacement (MKD), and ankle-dorsiflexion angle. EMG of vastus medialis oblique (VMO), vastus lateralis (VL), lateral gastrocnemius (LG), and soleus (SOL). One-way repeated-measures ANOVAs were performed to determine differences between the W and NW conditions.Results:Compared with the NW condition, the wedge produced decreased peak knee flexion (P < .001, effect size [ES] = 0.81) and knee-flexion excursion (P < .001, ES = 0.82) while producing increased peak ankle dorsiflexion (P = .006, ES = 0.31), ankle-dorsiflexion excursion (P < .001, ES = 0.31), peak knee-valgus angle (P = .02, ES = 0.21), and MKD (P < .001, ES = 2.92). During the W condition, VL (P = 0.002, ES = 0.33) and VMO (P = .049, ES = 0.20) activity decreased while soleus activity increased (P = .03, ES = 0.64) compared with the NW condition. No changes were seen in hip kinematics (P > .05).Conclusions:Altering ankle-dorsiflexion starting position during a double-leg squat resulted in increased knee valgus and MKD, as well as decreased quadriceps activation and increased soleus activation. These changes are similar to those seen in people with PFP.


2021 ◽  
Vol 6 (1) ◽  
pp. 27
Author(s):  
Stefano Ghirardelli ◽  
Jessica L. Asay ◽  
Erika A. Leonardi ◽  
Tommaso Amoroso ◽  
Thomas P. Andriacchi ◽  
...  

Background: This study compares knee kinematics in two groups of patients who have undergone primary total knee arthroplasty (TKA) using two different modern designs: medially congruent (MC) and posterior-stabilized (PS). The aim of the study is to demonstrate only minimal differences between the groups. Methods: Ten TKA patients (4 PS, 6 MC) with successful clinical outcomes were evaluated through 3D knee kinematics analysis performed using a multicamera optoelectronic system and a force platform. Extracted kinematic data included knee flexion angle at heel-strike (KFH), peak midstance knee flexion angle (MSKFA), maximum and minimum knee adduction angle (KAA), and knee rotational angle at heel-strike. Data were compared with a group of healthy controls. Results: There were no differences in preferred walking speed between MC and PS groups, but we found consistent differences in knee function. At heel-strike, the knee tended to be more flexed in the PS group compared to the MC group; the MSKFA tended to be higher in the PS group compared to the MC group. There was a significant fluctuation in KAA during the swing phase in the PS group compared to the MC group, PS patients showed a higher peak knee flexion moment compared to MC patients, and the PS group had significantly less peak internal rotation moments than the MC group. Conclusions: Modern, third-generation TKA designs failed to reproduce normal knee kinematics. MC knees tended to reproduce a more natural kinematic pattern at heel-strike and during axial rotation, while PS knees showed better kinematics during mid-flexion.


Author(s):  
Tishya L. Wren ◽  
Veronica Beltran ◽  
Mia J. Katzel ◽  
Adriana S. Conrad-Forrest ◽  
Curtis D. VandenBerg

Iliotibial band autograft is an increasingly popular option for pediatric anterior cruciate ligament reconstruction (ACLR). The purpose of this study was to compare recovery of knee extensor mechanism function among pediatric patients who underwent ACLR using iliotibial band (IT), hamstring tendon (HT), quadriceps tendon (QT), and patellar tendon (PT) autografts. One hundred forty-five pediatric athletes (76 female; age 15.0, range 7–21 years) with recent (3–18 months) unilateral ACLR performed drop-jump landing and 45° cutting with 3D motion capture. Knee extensor mechanism function (maximum knee flexion angle, maximum internal knee extensor moment, energy absorption at knee) during the loading phase (foot contact to peak knee flexion) was compared among graft types (20 IT, 29 HT, 39 QT, 57 PT) and sides (ACLR or contralateral) using linear mixed models with sex, age, and time since surgery as covariates. Overall, knee flexion was significantly lower on the operated vs. contralateral side for HT, QT, and PT during both tasks (p < 0.03). All graft types exhibited lower knee extensor moments and energy absorption on the operated side during both movements (p ≤ 0.001). Kinetic asymmetry was significantly lower for IT compared with QT and PT during both movements (p ≤ 0.005), and similar patterns were observed for HT vs. QT and PT (p ≤ 0.07). Asymmetry was similar between IT and HT and between QT and PT. This study found that knee extensor mechanism function recovers fastest in pediatric ACLR patients with IT autografts, followed by HT, in comparison to QT and PT, suggesting that IT is a viable option for returning young athletes to play after ACLR.


Author(s):  
Young Dong Song ◽  
Shinichiro Nakamura ◽  
Shinichi Kuriyama ◽  
Kohei Nishitani ◽  
Hiromu Ito ◽  
...  

AbstractSeveral concepts may be used to restore normal knee kinematics after total knee arthroplasty. One is a kinematically aligned (KA) technique, which restores the native joint line and limb alignment, and the other is the use of a medial pivot knee (MPK) design, with a ball and socket joint in the medial compartment. This study aimed to compare motions, contact forces, and contact stress between mechanically aligned (MA) and KA (medial tilt 3° [KA3] and 5° [KA5]) models in MPK. An MPK design was virtually implanted with MA, KA3, and KA5 in a validated musculoskeletal computer model of a healthy knee, and the simulation of motion and contact forces was implemented. Anteroposterior (AP) positions, mediolateral positions, external rotation angles of the femoral component relative to the tibial insert, and tibiofemoral contact forces were evaluated at different knee flexion angles. Contact stresses on the tibial insert were calculated using finite element analysis. The AP position at the medial compartment was consistent for all models. From 0° to 120°, the femoral component in KA models showed larger posterior movement at the lateral compartment (0.3, 6.8, and 17.7 mm in MA, KA3, and KA5 models, respectively) and larger external rotation (4.2°, 12.0°, and 16.8° in the MA, KA3, and KA5 models, respectively) relative to the tibial component. Concerning the mediolateral position of the femoral component, the KA5 model was positioned more medially. The contact forces at the lateral compartment of all models were larger than those at the medial compartment at >60° of knee flexion. The peak contact stresses on the tibiofemoral joint at 90° and 120° of knee flexion were higher in the KA models. However, the peak contact stresses of the KA models at every flexion angle were <20 MPa. The KA technique in MPK can successfully achieve near-normal knee kinematics; however, there may be a concern for higher contact stresses on the tibial insert.


2013 ◽  
Vol 2013 ◽  
pp. 1-4 ◽  
Author(s):  
Satoshi Hamai ◽  
Taka-aki Moro-oka ◽  
Nicholas J. Dunbar ◽  
Hiromasa Miura ◽  
Yukihide Iwamoto ◽  
...  

Healthy knee kinematics during dynamic full flexion were evaluated using 3D-to-2D model registration techniques. Continuous knee motions were recorded during full flexion in a lunge from 85° to 150°. Medial and lateral tibiofemoral contacts and femoral internal-external and varus-valgus rotations were analyzed as a function of knee flexion angle. The medial tibiofemoral contact translated anteroposteriorly, but remained on the center of the medial compartment. On the other hand, the lateral tibiofemoral contact translated posteriorly to the edge of the tibial surface at 150° flexion. The femur exhibited external and valgus rotation relative to the tibia over the entire activity and reached 30° external and 5° valgus rotations at 150° flexion. Kinematics’ data during dynamic full flexion may provide important insight as to the designing of high-flexion total knee prostheses.


Sign in / Sign up

Export Citation Format

Share Document