scholarly journals Bacterial community structure and predicted alginate metabolic pathway in an alginate-degrading bacterial consortium

2016 ◽  
Vol 121 (3) ◽  
pp. 286-292 ◽  
Author(s):  
Akihisa Kita ◽  
Toyokazu Miura ◽  
Satoshi Kawata ◽  
Takeshi Yamaguchi ◽  
Yoshiko Okamura ◽  
...  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Laura N. Afanador-Barajas ◽  
Yendi E. Navarro-Noya ◽  
Marco L. Luna-Guido ◽  
Luc Dendooven

AbstractMicroorganisms are often applied as biofertilizer to crops to stimulate plant growth, increase yields and reduce inorganic N application. The survival and proliferation of these allochthonous microorganisms in soil is a necessary requisite for them to promote plant growth. We applied a sterilized or unsterilized not commercialized bacterial consortium mixed with cow manure leachate used by a farmer as biofertilizer to maize (Zea mays L.) in a greenhouse experiment, while maize development and the bacterial community structure was determined just before the biofertilizer was applied a first time (day 44), after three applications (day 89) and after six application at the end of the experiment (day 130). Application of sterilized or unsterilized biofertilizer with pH 4.3 and 864 mg NH4+-N kg−1 had no significant effect on maize growth. The application of the biofertilizer dominated by Lactobacillus (relative abundance 11.90%) or the sterilized biofertilizer changed the relative abundance of a limited number of bacterial groups, i.e. Delftia, Halomonas, Lactobacillus and Stenotrophomonas, without altering significantly the bacterial community structure. Cultivation of maize, however, affected significantly the bacterial community structure, which showed large significant variations over time in the cultivated and uncultivated soil. It was concluded that the bacteria applied as a biofertilizer had only a limited effect on the relative abundance of these groups in uncultivated or soil cultivated with maize.


2017 ◽  
Vol 28 (2-3) ◽  
pp. 181-194 ◽  
Author(s):  
Weiliang Dong ◽  
Kuan Liu ◽  
Fei Wang ◽  
Fengxue Xin ◽  
Wenming Zhang ◽  
...  

2014 ◽  
Vol 73 (1) ◽  
pp. 51-67 ◽  
Author(s):  
A Jain ◽  
M Bandekar ◽  
J Gomes ◽  
D Shenoy ◽  
RM Meena ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Stephanie E. Hereira-Pacheco ◽  
Yendi E. Navarro-Noya ◽  
Luc Dendooven

AbstractRhizosphere and root endophytic bacteria are crucial for plant development, but the question remains if their composition is similar and how environmental conditions, such as water content, affect their resemblance. Ricinus communis L., a highly drought resistant plant, was used to study how varying soil water content affected the bacterial community in uncultivated, non-rhizosphere and rhizosphere soil, and in its roots. Additionally, the bacterial community structure was determined in the seeds of R. communis at the onset of the experiment. Plants were cultivated in soil at three different watering regimes, i.e. 50% water holding capacity (WHC) or adjusted to 50% WHC every two weeks or every month. Reducing the soil water content strongly reduced plant and root dry biomass and plant development, but had little effect on the bacterial community structure. The bacterial community structure was affected significantly by cultivation of R. communis and showed large variations over time. After 6 months, the root endophytic bacterial community resembled that in the seeds more than in the rhizosphere. It was found that water content had only a limited effect on the bacterial community structure and the different bacterial groups, but R. communis affected the bacterial community profoundly.


Sign in / Sign up

Export Citation Format

Share Document