Rational design of translational pausing without altering the amino acid sequence dramatically promotes soluble protein expression: A strategic demonstration

2014 ◽  
Vol 189 ◽  
pp. 104-113 ◽  
Author(s):  
Wei Chen ◽  
Jingjie Jin ◽  
Wei Gu ◽  
Bo Wei ◽  
Yun Lei ◽  
...  
Author(s):  
Qianqian Song ◽  
Zhixiu Wang ◽  
Hongliang Zhang ◽  
Xiangxiang Li ◽  
Yang Zhang ◽  
...  

Accumulating studies have indicated that the long-chain fatty acyl-CoA1 (ACSL1) gene is related to fat deposition and meat quality in mammals. However, few studies have investigated the relationship between ACSL1 and lipid deposition in ducks. To examine this, we assessed the physicochemical property, homologous alignment and phylogenetic analyses of the ACSL1 amino acid sequence using bioinformatics tools. The analysis indicated that the ACSL1 amino acid sequence varies in animals, and the duck ACSL1 protein is most closely related to that of chicken. Two SNP sites were identified at 1749 and 1905 bp of the coding region of ACSL1 by sequencing. Quantitative real-time PCR and western blotting were used to measure mRNA and protein levels in abdominal fat, breast muscle and liver tissue of Pekin duck (BD) and Cherry Valley duck (CD). mRNA and protein expression were significantly higher in BD than in CD in abdominal fat and liver tissue (P < 0.05). In breast muscle, the mRNA level of ACSL1 was also significantly higher in BD than in CD (P < 0.05), and protein expression in BD tended to be higher than that of CD. These results suggest that ACSL1 may contribute to lipid deposition and meat quality in ducks.


2018 ◽  
Vol 13 (10) ◽  
pp. 2855-2861 ◽  
Author(s):  
Zachary M. Hostetler ◽  
John J. Ferrie ◽  
Marc R. Bornstein ◽  
Itthipol Sungwienwong ◽  
E. James Petersson ◽  
...  

1987 ◽  
Vol 42 (2-3) ◽  
pp. 225-230 ◽  
Author(s):  
Per Einar Granum ◽  
Michael Richardson ◽  
Hans Blom

2019 ◽  
Author(s):  
Zhao Qin ◽  
Lingfei Wu ◽  
Hui Sun ◽  
Siyu Huo ◽  
Tengfei Ma ◽  
...  

The development of rational techniques to discover new proteins for use in variety of applications ranging from agriculture to biotechnology remains an outstanding materials design problem. The key barrier is to design a sequence to fold into a predictable structure to achieve a certain material function. Focused on alpha-helical proteins, we report a Multi-scale Neighborhood-based Neural Network (MNNN) model to learn how a specific amino acid sequence folds into a protein structure. The algorithm predicts the protein structure without using a template or co-evolutional information at a maximum error of 2.1 Angstrom. We find that the prediction accuracy is higher than other models and the prediction consumes less than six orders of magnitude time than ab initio folding methods. We demonstrate that MNNN can predict the structure of an unknown protein that agrees with experiments, and our model hence shows a great advantage in the rational design of de novo proteins.


Author(s):  
M.K. Lamvik ◽  
L.L. Klatt

Tropomyosin paracrystals have been used extensively as test specimens and magnification standards due to their clear periodic banding patterns. The paracrystal type discovered by Ohtsuki1 has been of particular interest as a test of unstained specimens because of alternating bands that differ by 50% in mass thickness. While producing specimens of this type, we came across a new paracrystal form. Since this new form displays aligned tropomyosin molecules without the overlaps that are characteristic of the Ohtsuki-type paracrystal, it presents a staining pattern that corresponds to the amino acid sequence of the molecule.


1989 ◽  
Vol 61 (03) ◽  
pp. 437-441 ◽  
Author(s):  
Cindra Condra ◽  
Elka Nutt ◽  
Christopher J Petroski ◽  
Ellen Simpson ◽  
P A Friedman ◽  
...  

SummaryThe present work reports the discovery and charactenzation of an anticoagulant protein in the salivary gland of the giant bloodsucking leech, H. ghilianii, which is a specific and potent inhibitor of coagulation factor Xa. The inhibitor, purified to homogeneity, displayed subnanomolar inhibition of bovine factor Xa and had a molecular weight of approximately 15,000 as deduced by denaturing SDS-PAGE. The amino acid sequence of the first 43 residues of the H. ghilianii derived inhibitor displayed a striking homology to antistasin, the recently described subnanomolar inhibitor of factor Xa isolated from the Mexican leech, H. officinalis. Antisera prepared to antistasin cross-reacted with the H. ghilianii protein in Western Blot analysis. These data indicate that the giant Amazonian leech, H. ghilianii, and the smaller Mexican leech, H. officinalrs, have similar proteins which disrupt the normal hemostatic clotting mechanisms in their mammalian host’s blood.


1993 ◽  
Vol 69 (03) ◽  
pp. 217-220 ◽  
Author(s):  
Jonathan B Rosenberg ◽  
Peter J Newman ◽  
Michael W Mosesson ◽  
Marie-Claude Guillin ◽  
David L Amrani

SummaryParis I dysfibrinogenemia results in the production of a fibrinogen molecule containing a functionally abnormal γ-chain. We determined the basis of the molecular defect using polymerase chain reaction (PCR) to amplify the γ-chain region of the Paris I subject’s genomic DNA. Comparative sequence analysis of cloned PCR segments of normal and Paris I genomic DNA revealed only an A→G point mutation occurring at nucleotide position 6588 within intron 8 of the Paris I γ-chain gene. We examined six normal individuals and found only normal sequence in this region, indicating that this change is not likely to represent a normal polymorphism. This nucleotide change leads to a 45 bp fragment being inserted between exons 8 and 9 in the mature γparis I chain mRNA, and encodes a 15 amino acid insert after γ350 [M-C-G-E-A-L-P-M-L-K-D-P-C-Y]. Alternative splicing of this region from intron 8 into the mature Paris I γ-chain mRNA also results after translation into a substitution of S for G at position γ351. Biochemical studies of 14C-iodoacetamide incorporation into disulfide-reduced Paris I and normal fibrinogen corroborated the molecular biologic predictions that two additional cysteine residues exist within the γpariS I chain. We conclude that the insertion of this amino acid sequence leads to a conformationallyaltered, and dysfunctional γ-chain in Paris I fibrinogen.


1979 ◽  
Vol 42 (05) ◽  
pp. 1652-1660 ◽  
Author(s):  
Francis J Morgan ◽  
Geoffrey S Begg ◽  
Colin N Chesterman

SummaryThe amino acid sequence of the subunit of human platelet factor 4 has been determined. Human platelet factor 4 consists of identical subunits containing 70 amino acids, each with a molecular weight of 7,756. The molecule contains no methionine, phenylalanine or tryptophan. The proposed amino acid sequence of PF4 is: Glu-Ala-Glu-Glu-Asp-Gly-Asp-Leu-Gln-Cys-Leu-Cys-Val-Lys-Thr-Thr-Ser- Gln-Val-Arg-Pro-Arg-His-Ile-Thr-Ser-Leu-Glu-Val-Ile-Lys-Ala-Gly-Pro-His-Cys-Pro-Thr-Ala-Gin- Leu-Ile-Ala-Thr-Leu-Lys-Asn-Gly-Arg-Lys-Ile-Cys-Leu-Asp-Leu-Gln-Ala-Pro-Leu-Tyr-Lys-Lys- Ile-Ile-Lys-Lys-Leu-Leu-Glu-Ser. From consideration of the homology with p-thromboglobulin, disulphide bonds between residues 10 and 36 and between residues 12 and 52 can be inferred.


Sign in / Sign up

Export Citation Format

Share Document