scholarly journals An improved heat transfer search algorithm for unconstrained optimization problems

2018 ◽  
Vol 6 (1) ◽  
pp. 13-32 ◽  
Author(s):  
Ghanshyam G. Tejani ◽  
Vimal J. Savsani ◽  
Vivek K. Patel ◽  
Seyedali Mirjalili

Abstract In this work, an improved heat transfer search (IHTS) algorithm is proposed by incorporating the effect of the simultaneous heat transfer modes and population regeneration in the basic HTS algorithm. The basic HTS algorithm considers only one of the modes of heat transfer (conduction, convection, and radiation) for each generation. In the proposed algorithms, however, the system molecules are considered as the search agents that interact with each other as well as with the surrounding to a state of the thermal equilibrium. Another improvement is the integration of a population regenerator to reduce the probability of local optima stagnation. The population regenerator is applied to the solutions without improvements for a pre-defined number of iterations. The feasibility and effectiveness of the proposed algorithms are investigated by 23 classical benchmark functions and 30 functions extracted from the CEC2014 test suite. Also, two truss design problems are solved to demonstrate the applicability of the proposed algorithms. The results show that the IHTS algorithm is more effective as compared to the HTS algorithm. Moreover, the IHTS algorithm provides very competitive results compared to the existing meta-heuristics in the literature. Highlights An improved Heat Transfer Search (HTS) algorithm is proposed. A novel population regenerator is integrated to the improved HTS. A set of 53 test functions is employed to test the performance of the proposed algorithm. The results are compared with several techniques in the literature.

2022 ◽  
Vol 19 (1) ◽  
pp. 473-512
Author(s):  
Rong Zheng ◽  
◽  
Heming Jia ◽  
Laith Abualigah ◽  
Qingxin Liu ◽  
...  

<abstract> <p>Arithmetic optimization algorithm (AOA) is a newly proposed meta-heuristic method which is inspired by the arithmetic operators in mathematics. However, the AOA has the weaknesses of insufficient exploration capability and is likely to fall into local optima. To improve the searching quality of original AOA, this paper presents an improved AOA (IAOA) integrated with proposed forced switching mechanism (FSM). The enhanced algorithm uses the random math optimizer probability (<italic>RMOP</italic>) to increase the population diversity for better global search. And then the forced switching mechanism is introduced into the AOA to help the search agents jump out of the local optima. When the search agents cannot find better positions within a certain number of iterations, the proposed FSM will make them conduct the exploratory behavior. Thus the cases of being trapped into local optima can be avoided effectively. The proposed IAOA is extensively tested by twenty-three classical benchmark functions and ten CEC2020 test functions and compared with the AOA and other well-known optimization algorithms. The experimental results show that the proposed algorithm is superior to other comparative algorithms on most of the test functions. Furthermore, the test results of two training problems of multi-layer perceptron (MLP) and three classical engineering design problems also indicate that the proposed IAOA is highly effective when dealing with real-world problems.</p> </abstract>


2012 ◽  
Vol 190-191 ◽  
pp. 911-914
Author(s):  
Ruo Ping Li ◽  
Hai Bin Ouyang ◽  
Li Qun Gao

Harmony search (HS) algorithm is a new mate heuristic algorithm, which is conceptualized using the musical improvisation process of searching for a perfect state of harmony. Its own potential and shortage, one of its main disadvantages is that it easily trapped into local optima and converges very slowly. Based on the conception of swarm intelligence, this paper presents an amended harmony search (AHS) algorithm. AHS introduces a novel position updating strategy for generating new solution vectors, which enhances solution accuracy and convergence rate of algorithm. Several standard benchmark optimization functions are to be test and compare the performance of the AHS. The results revealed the superiority of the proposed method to the HS and its three improved algorithms (IHS, GHS and NGHS).


2014 ◽  
Vol 8 (1) ◽  
pp. 218-221 ◽  
Author(s):  
Ping Hu ◽  
Zong-yao Wang

We propose a non-monotone line search combination rule for unconstrained optimization problems, the corresponding non-monotone search algorithm is established and its global convergence can be proved. Finally, we use some numerical experiments to illustrate the new combination of non-monotone search algorithm’s effectiveness.


2016 ◽  
Vol 25 (06) ◽  
pp. 1650033 ◽  
Author(s):  
Hossam Faris ◽  
Ibrahim Aljarah ◽  
Nailah Al-Madi ◽  
Seyedali Mirjalili

Evolutionary Neural Networks are proven to be beneficial in solving challenging datasets mainly due to the high local optima avoidance. Stochastic operators in such techniques reduce the probability of stagnation in local solutions and assist them to supersede conventional training algorithms such as Back Propagation (BP) and Levenberg-Marquardt (LM). According to the No-Free-Lunch (NFL), however, there is no optimization technique for solving all optimization problems. This means that a Neural Network trained by a new algorithm has the potential to solve a new set of problems or outperform the current techniques in solving existing problems. This motivates our attempts to investigate the efficiency of the recently proposed Evolutionary Algorithm called Lightning Search Algorithm (LSA) in training Neural Network for the first time in the literature. The LSA-based trainer is benchmarked on 16 popular medical diagnosis problems and compared to BP, LM, and 6 other evolutionary trainers. The quantitative and qualitative results show that the LSA algorithm is able to show not only better local solutions avoidance but also faster convergence speed compared to the other algorithms employed. In addition, the statistical test conducted proves that the LSA-based trainer is significantly superior in comparison with the current algorithms on the majority of datasets.


Author(s):  
Xiaohui Yuan ◽  
Zhihuan Chen ◽  
Yanbin Yuan ◽  
Yuehua Huang ◽  
Xiaopan Zhang

A novel strength Pareto gravitational search algorithm (SPGSA) is proposed to solve multi-objective optimization problems. This SPGSA algorithm utilizes the strength Pareto concept to assign the fitness values for agents and uses a fine-grained elitism selection mechanism to keep the population diversity. Furthermore, the recombination operators are modeled in this approach to decrease the possibility of trapping in local optima. Experiments are conducted on a series of benchmark problems that are characterized by difficulties in local optimality, nonuniformity, and nonconvexity. The results show that the proposed SPGSA algorithm performs better in comparison with other related works. On the other hand, the effectiveness of two subtle means added to the GSA are verified, i.e. the fine-grained elitism selection and the use of SBX and PMO operators. Simulation results show that these measures not only improve the convergence ability of original GSA, but also preserve the population diversity adequately, which enables the SPGSA algorithm to have an excellent ability that keeps a desirable balance between the exploitation and exploration so as to accelerate the convergence speed to the true Pareto-optimal front.


2017 ◽  
Vol 8 (3) ◽  
pp. 1-23 ◽  
Author(s):  
Ghanshyam Tejani ◽  
Vimal Savsani ◽  
Vivek Patel

In this study, a modified heat transfer search (MHTS) algorithm is proposed by incorporating sub-population based simultaneous heat transfer modes viz. conduction, convection, and radiation in the basic HTS algorithm. However, the basic HTS algorithm considers only one of the modes of heat transfer for each generation. The multiple natural frequency constraints in truss optimization problems can improve the dynamic behavior of the structure and prevent undesirable vibrations. However, shape and size variables subjected to frequency constraints are difficult to handle due to the complexity of its feasible region, which is non-linear, non-convex, implicit, and often converging to the local optimal solution. The viability and effectiveness of the HTS and MHTS algorithms are investigated by six standard trusses problems. The solutions illustrate that the MHTS algorithm performs better than the HTS algorithm.


2014 ◽  
Vol 644-650 ◽  
pp. 2169-2172
Author(s):  
Zhi Kong ◽  
Guo Dong Zhang ◽  
Li Fu Wang

This paper develops an improved novel global harmony search (INGHS) algorithm for solving optimization problems. INGHS employs a novel method for generating new solution vectors that enhances accuracy and convergence rate of novel global harmony search (NGHS) algorithm. Simulations for five benchmark test functions show that INGHS possesses better ability to find the global optimum than that of harmony search (HS) algorithm. Compared with NGHS and HS, INGHS is better in terms of robustness and efficiency.


2014 ◽  
Vol 1065-1069 ◽  
pp. 3438-3441
Author(s):  
Guo Jun Li

Harmony search (HS) algorithm is a new population based algorithm, which imitates the phenomenon of musical improvisation process. Its own potential and shortage, one shortage is that it easily trapped into local optima. In this paper, a hybrid harmony search algorithm (HHS) is proposed based on the conception of swarm intelligence. HHS employed a local search method to replace the pitch adjusting operation, and designed an elitist preservation strategy to modify the selection operation. Experiment results demonstrated that the proposed method performs much better than the HS and its improved algorithms (IHS, GHS and NGHS).


Processes ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 1551
Author(s):  
Shuang Wang ◽  
Heming Jia ◽  
Laith Abualigah ◽  
Qingxin Liu ◽  
Rong Zheng

Aquila Optimizer (AO) and Harris Hawks Optimizer (HHO) are recently proposed meta-heuristic optimization algorithms. AO possesses strong global exploration capability but insufficient local exploitation ability. However, the exploitation phase of HHO is pretty good, while the exploration capability is far from satisfactory. Considering the characteristics of these two algorithms, an improved hybrid AO and HHO combined with a nonlinear escaping energy parameter and random opposition-based learning strategy is proposed, namely IHAOHHO, to improve the searching performance in this paper. Firstly, combining the salient features of AO and HHO retains valuable exploration and exploitation capabilities. In the second place, random opposition-based learning (ROBL) is added in the exploitation phase to improve local optima avoidance. Finally, the nonlinear escaping energy parameter is utilized better to balance the exploration and exploitation phases of IHAOHHO. These two strategies effectively enhance the exploration and exploitation of the proposed algorithm. To verify the optimization performance, IHAOHHO is comprehensively analyzed on 23 standard benchmark functions. Moreover, the practicability of IHAOHHO is also highlighted by four industrial engineering design problems. Compared with the original AO and HHO and five state-of-the-art algorithms, the results show that IHAOHHO has strong superior performance and promising prospects.


2014 ◽  
Vol 596 ◽  
pp. 192-195
Author(s):  
Ping Zhang ◽  
Peng Sun ◽  
Yi Ning Zhang ◽  
Guo Jun Li

Recently, a new meta-heuristic optimization algorithm–harmony search (HS) was developed, which imitates the behaviors of music improvisation. Although several variants and an increasing number of applications have appeared, one of its main difficulties is how to select suitable parameter values. In this paper, a self-adaptive harmony search algorithm (SaHS) proposed. In this algorithm, we design a new parameter setting strategy to directly tune the parameters in the search process, and balance the process of exploitation and exploration. Finally, we use SaHS to solve unconstrained optimization problems so as to profoundly study and analyze the performance of the SaHS. The results show that the SaHS has better convergence accuracy than the other three harmony search algorithms.


Sign in / Sign up

Export Citation Format

Share Document