Modified Sub-Population Based Heat Transfer Search Algorithm for Structural Optimization

2017 ◽  
Vol 8 (3) ◽  
pp. 1-23 ◽  
Author(s):  
Ghanshyam Tejani ◽  
Vimal Savsani ◽  
Vivek Patel

In this study, a modified heat transfer search (MHTS) algorithm is proposed by incorporating sub-population based simultaneous heat transfer modes viz. conduction, convection, and radiation in the basic HTS algorithm. However, the basic HTS algorithm considers only one of the modes of heat transfer for each generation. The multiple natural frequency constraints in truss optimization problems can improve the dynamic behavior of the structure and prevent undesirable vibrations. However, shape and size variables subjected to frequency constraints are difficult to handle due to the complexity of its feasible region, which is non-linear, non-convex, implicit, and often converging to the local optimal solution. The viability and effectiveness of the HTS and MHTS algorithms are investigated by six standard trusses problems. The solutions illustrate that the MHTS algorithm performs better than the HTS algorithm.

2014 ◽  
Vol 1065-1069 ◽  
pp. 3438-3441
Author(s):  
Guo Jun Li

Harmony search (HS) algorithm is a new population based algorithm, which imitates the phenomenon of musical improvisation process. Its own potential and shortage, one shortage is that it easily trapped into local optima. In this paper, a hybrid harmony search algorithm (HHS) is proposed based on the conception of swarm intelligence. HHS employed a local search method to replace the pitch adjusting operation, and designed an elitist preservation strategy to modify the selection operation. Experiment results demonstrated that the proposed method performs much better than the HS and its improved algorithms (IHS, GHS and NGHS).


2021 ◽  
Vol 9 (3-4) ◽  
pp. 89-99
Author(s):  
Ivona Brajević ◽  
Miodrag Brzaković ◽  
Goran Jocić

Beetle antennae search (BAS) algorithm is a newly proposed single-solution based metaheuristic technique inspired by the beetle preying process. Although BAS algorithm has shown good search abilities, it can be easily trapped into local optimum when it is used to solve hard optimization problems. With the intention to overcome this drawback, this paper presents a population-based beetle antennae search (PBAS) algorithm for solving integer programming problems.  This method employs the population's capability to search diverse regions of the search space to provide better guarantee for finding the optimal solution. The PBAS method was tested on nine integer programming problems and one mechanical design problem. The proposed algorithm was compared to other state-of-the-art metaheuristic techniques. The comparisons show that the proposed PBAS algorithm produces better results for majority of tested problems.  


2021 ◽  
Vol 9 (3-4) ◽  
pp. 89-99
Author(s):  
Ivona Brajević ◽  
Miodrag Brzaković ◽  
Goran Jocić

Beetle antennae search (BAS) algorithm is a newly proposed single-solution based metaheuristic technique inspired by the beetle preying process. Although BAS algorithm has shown good search abilities, it can be easily trapped into local optimum when it is used to solve hard optimization problems. With the intention to overcome this drawback, this paper presents a population-based beetle antennae search (PBAS) algorithm for solving integer programming problems. This method employs the population's capability to search diverse regions of the search space to provide better guarantee for finding the optimal solution. The PBAS method was tested on nine integer programming problems and one mechanical design problem. The proposed algorithm was compared to other state-of-the-art metaheuristic techniques. The comparisons show that the proposed PBAS algorithm produces better results for majority of tested problems.


2019 ◽  
Vol 2 (3) ◽  
pp. 508-517
Author(s):  
FerdaNur Arıcı ◽  
Ersin Kaya

Optimization is a process to search the most suitable solution for a problem within an acceptable time interval. The algorithms that solve the optimization problems are called as optimization algorithms. In the literature, there are many optimization algorithms with different characteristics. The optimization algorithms can exhibit different behaviors depending on the size, characteristics and complexity of the optimization problem. In this study, six well-known population based optimization algorithms (artificial algae algorithm - AAA, artificial bee colony algorithm - ABC, differential evolution algorithm - DE, genetic algorithm - GA, gravitational search algorithm - GSA and particle swarm optimization - PSO) were used. These six algorithms were performed on the CEC’17 test functions. According to the experimental results, the algorithms were compared and performances of the algorithms were evaluated.


2021 ◽  
pp. 136943322110262
Author(s):  
Mohammad H Makiabadi ◽  
Mahmoud R Maheri

An enhanced symbiotic organisms search (ESOS) algorithm is developed and presented. Modifications to the basic symbiotic organisms search algorithm are carried out in all three phases of the algorithm with the aim of balancing the exploitation and exploration capabilities of the algorithm. To verify validity and capability of the ESOS algorithm in solving general optimization problems, the CEC2014 set of 22 benchmark functions is first optimized and the results are compared with other metaheuristic algorithms. The ESOS algorithm is then used to optimize the sizing and shape of five benchmark trusses with multiple frequency constraints. The best (minimum) mass, mean mass, standard deviation of the mass, total number of function evaluations, and the values of frequency constraints are then compared with those of a number of other metaheuristic solutions available in the literature. It is shown that the proposed ESOS algorithm is generally more efficient in optimizing the shape and sizing of trusses with dynamic frequency constraints compared to other reported metaheuristic algorithms, including the basic symbiotic organisms search and its other recently proposed improved variants such as the improved symbiotic organisms search algorithm (ISOS) and modified symbiotic organisms search algorithm (MSOS).


Mathematics ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1190
Author(s):  
Mohammad Dehghani ◽  
Zeinab Montazeri ◽  
Štěpán Hubálovský

There are many optimization problems in the different disciplines of science that must be solved using the appropriate method. Population-based optimization algorithms are one of the most efficient ways to solve various optimization problems. Population-based optimization algorithms are able to provide appropriate solutions to optimization problems based on a random search of the problem-solving space without the need for gradient and derivative information. In this paper, a new optimization algorithm called the Group Mean-Based Optimizer (GMBO) is presented; it can be applied to solve optimization problems in various fields of science. The main idea in designing the GMBO is to use more effectively the information of different members of the algorithm population based on two selected groups, with the titles of the good group and the bad group. Two new composite members are obtained by averaging each of these groups, which are used to update the population members. The various stages of the GMBO are described and mathematically modeled with the aim of being used to solve optimization problems. The performance of the GMBO in providing a suitable quasi-optimal solution on a set of 23 standard objective functions of different types of unimodal, high-dimensional multimodal, and fixed-dimensional multimodal is evaluated. In addition, the optimization results obtained from the proposed GMBO were compared with eight other widely used optimization algorithms, including the Marine Predators Algorithm (MPA), the Tunicate Swarm Algorithm (TSA), the Whale Optimization Algorithm (WOA), the Grey Wolf Optimizer (GWO), Teaching–Learning-Based Optimization (TLBO), the Gravitational Search Algorithm (GSA), Particle Swarm Optimization (PSO), and the Genetic Algorithm (GA). The optimization results indicated the acceptable performance of the proposed GMBO, and, based on the analysis and comparison of the results, it was determined that the GMBO is superior and much more competitive than the other eight algorithms.


Processes ◽  
2020 ◽  
Vol 8 (8) ◽  
pp. 980
Author(s):  
Gustavo Meirelles ◽  
Bruno Brentan ◽  
Joaquín Izquierdo ◽  
Edevar Luvizotto

Agent-based algorithms, based on the collective behavior of natural social groups, exploit innate swarm intelligence to produce metaheuristic methodologies to explore optimal solutions for diverse processes in systems engineering and other sciences. Especially for complex problems, the processing time, and the chance to achieve a local optimal solution, are drawbacks of these algorithms, and to date, none has proved its superiority. In this paper, an improved swarm optimization technique, named Grand Tour Algorithm (GTA), based on the behavior of a peloton of cyclists, which embodies relevant physical concepts, is introduced and applied to fourteen benchmarking optimization problems to evaluate its performance in comparison to four other popular classical optimization metaheuristic algorithms. These problems are tackled initially, for comparison purposes, with 1000 variables. Then, they are confronted with up to 20,000 variables, a really large number, inspired in the human genome. The obtained results show that GTA clearly outperforms the other algorithms. To strengthen GTA’s value, various sensitivity analyses are performed to verify the minimal influence of the initial parameters on efficiency. It is demonstrated that the GTA fulfils the fundamental requirements of an optimization algorithm such as ease of implementation, speed of convergence, and reliability. Since optimization permeates modeling and simulation, we finally propose that GTA will be appealing for the agent-based community, and of great help for a wide variety of agent-based applications.


2013 ◽  
Vol 760-762 ◽  
pp. 1690-1694
Author(s):  
Jian Xia Zhang ◽  
Tao Yu ◽  
Ji Ping Chen ◽  
Ying Hao Lin ◽  
Yu Meng Zhang

With the wide application of UAV in the scientific research,its route planning is becoming more and more important. In order to design the best route planning when UAV operates in the field, this paper mainly puts to use the simple genetic algorithm to design 3D-route planning. It primarily introduces the advantages of genetic algorithm compared to others on the designing of route planning. The improvement of simple genetic algorithm is because of the safety of UAV when it flights higher, and the 3D-route planning should include all the corresponding areas. The simulation results show that: the improvement of simple genetic algorithm gets rid of the dependence of parameters, at the same time it is a global search algorithm to avoid falling into the local optimal solution. Whats more, it can meet the requirements of the 3D-route planning design, to the purpose of regional scope and high safety.


2013 ◽  
Vol 816-817 ◽  
pp. 1154-1157
Author(s):  
Xu Yin ◽  
Ai Min Ji

To solve problems that exist in optimal design such as falling into local optimal solution easily and low efficiency in collaborative optimization, a new mix strategy optimization method combined design of experiments (DOE) with gradient optimization (GO) was proposed. In order to reduce the effect on the result of optimization made by the designers decision, DOE for preliminary analysis of the function model was used, and the optimal values obtained in DOE stage was taken as the initial values of design variables in GO stage in the new optimization method. The reducer MDO problem was taken as a example to confirm the global degree, efficiency, and accuracy of the method. The results show the optimization method could not only avoid falling into local solution, but also have an obvious superiority in treating the complex collaborative optimization problems.


Sign in / Sign up

Export Citation Format

Share Document