scholarly journals An improved arithmetic optimization algorithm with forced switching mechanism for global optimization problems

2022 ◽  
Vol 19 (1) ◽  
pp. 473-512
Author(s):  
Rong Zheng ◽  
◽  
Heming Jia ◽  
Laith Abualigah ◽  
Qingxin Liu ◽  
...  

<abstract> <p>Arithmetic optimization algorithm (AOA) is a newly proposed meta-heuristic method which is inspired by the arithmetic operators in mathematics. However, the AOA has the weaknesses of insufficient exploration capability and is likely to fall into local optima. To improve the searching quality of original AOA, this paper presents an improved AOA (IAOA) integrated with proposed forced switching mechanism (FSM). The enhanced algorithm uses the random math optimizer probability (<italic>RMOP</italic>) to increase the population diversity for better global search. And then the forced switching mechanism is introduced into the AOA to help the search agents jump out of the local optima. When the search agents cannot find better positions within a certain number of iterations, the proposed FSM will make them conduct the exploratory behavior. Thus the cases of being trapped into local optima can be avoided effectively. The proposed IAOA is extensively tested by twenty-three classical benchmark functions and ten CEC2020 test functions and compared with the AOA and other well-known optimization algorithms. The experimental results show that the proposed algorithm is superior to other comparative algorithms on most of the test functions. Furthermore, the test results of two training problems of multi-layer perceptron (MLP) and three classical engineering design problems also indicate that the proposed IAOA is highly effective when dealing with real-world problems.</p> </abstract>

Processes ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 1551
Author(s):  
Shuang Wang ◽  
Heming Jia ◽  
Laith Abualigah ◽  
Qingxin Liu ◽  
Rong Zheng

Aquila Optimizer (AO) and Harris Hawks Optimizer (HHO) are recently proposed meta-heuristic optimization algorithms. AO possesses strong global exploration capability but insufficient local exploitation ability. However, the exploitation phase of HHO is pretty good, while the exploration capability is far from satisfactory. Considering the characteristics of these two algorithms, an improved hybrid AO and HHO combined with a nonlinear escaping energy parameter and random opposition-based learning strategy is proposed, namely IHAOHHO, to improve the searching performance in this paper. Firstly, combining the salient features of AO and HHO retains valuable exploration and exploitation capabilities. In the second place, random opposition-based learning (ROBL) is added in the exploitation phase to improve local optima avoidance. Finally, the nonlinear escaping energy parameter is utilized better to balance the exploration and exploitation phases of IHAOHHO. These two strategies effectively enhance the exploration and exploitation of the proposed algorithm. To verify the optimization performance, IHAOHHO is comprehensively analyzed on 23 standard benchmark functions. Moreover, the practicability of IHAOHHO is also highlighted by four industrial engineering design problems. Compared with the original AO and HHO and five state-of-the-art algorithms, the results show that IHAOHHO has strong superior performance and promising prospects.


Symmetry ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 1049 ◽  
Author(s):  
Guocheng Li ◽  
Fei Shuang ◽  
Pan Zhao ◽  
Chengyi Le

Engineering design optimization in real life is a challenging global optimization problem, and many meta-heuristic algorithms have been proposed to obtain the global best solutions. An excellent meta-heuristic algorithm has two symmetric search capabilities: local search and global search. In this paper, an improved Butterfly Optimization Algorithm (BOA) is developed by embedding the cross-entropy (CE) method into the original BOA. Based on a co-evolution technique, this new method achieves a proper balance between exploration and exploitation to enhance its global search capability, and effectively avoid it falling into a local optimum. The performance of the proposed approach was evaluated on 19 well-known benchmark test functions and three classical engineering design problems. The results of the test functions show that the proposed algorithm can provide very competitive results in terms of improved exploration, local optima avoidance, exploitation, and convergence rate. The results of the engineering problems prove that the new approach is applicable to challenging problems with constrained and unknown search spaces.


2021 ◽  
Vol 18 (6) ◽  
pp. 7076-7109
Author(s):  
Shuang Wang ◽  
◽  
Heming Jia ◽  
Qingxin Liu ◽  
Rong Zheng ◽  
...  

<abstract> <p>This paper introduces an improved hybrid Aquila Optimizer (AO) and Harris Hawks Optimization (HHO) algorithm, namely IHAOHHO, to enhance the searching performance for global optimization problems. In the IHAOHHO, valuable exploration and exploitation capabilities of AO and HHO are retained firstly, and then representative-based hunting (RH) and opposition-based learning (OBL) strategies are added in the exploration and exploitation phases to effectively improve the diversity of search space and local optima avoidance capability of the algorithm, respectively. To verify the optimization performance and the practicability, the proposed algorithm is comprehensively analyzed on standard and CEC2017 benchmark functions and three engineering design problems. The experimental results show that the proposed IHAOHHO has more superior global search performance and faster convergence speed compared to the basic AO and HHO and selected state-of-the-art meta-heuristic algorithms.</p> </abstract>


2018 ◽  
Vol 6 (1) ◽  
pp. 13-32 ◽  
Author(s):  
Ghanshyam G. Tejani ◽  
Vimal J. Savsani ◽  
Vivek K. Patel ◽  
Seyedali Mirjalili

Abstract In this work, an improved heat transfer search (IHTS) algorithm is proposed by incorporating the effect of the simultaneous heat transfer modes and population regeneration in the basic HTS algorithm. The basic HTS algorithm considers only one of the modes of heat transfer (conduction, convection, and radiation) for each generation. In the proposed algorithms, however, the system molecules are considered as the search agents that interact with each other as well as with the surrounding to a state of the thermal equilibrium. Another improvement is the integration of a population regenerator to reduce the probability of local optima stagnation. The population regenerator is applied to the solutions without improvements for a pre-defined number of iterations. The feasibility and effectiveness of the proposed algorithms are investigated by 23 classical benchmark functions and 30 functions extracted from the CEC2014 test suite. Also, two truss design problems are solved to demonstrate the applicability of the proposed algorithms. The results show that the IHTS algorithm is more effective as compared to the HTS algorithm. Moreover, the IHTS algorithm provides very competitive results compared to the existing meta-heuristics in the literature. Highlights An improved Heat Transfer Search (HTS) algorithm is proposed. A novel population regenerator is integrated to the improved HTS. A set of 53 test functions is employed to test the performance of the proposed algorithm. The results are compared with several techniques in the literature.


Symmetry ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 1234
Author(s):  
Yu Li ◽  
Xinya Zhu ◽  
Jingsen Liu

In this paper, an improved moth-flame optimization algorithm (IMFO) is presented to solve engineering problems. Two novel effective strategies composed of Lévy flight and dimension-by-dimension evaluation are synchronously introduced into the moth-flame optimization algorithm (MFO) to maintain a great global exploration ability and effective balance between the global and local search. The search strategy of Lévy flight is used as a regulator of the moth-position update mechanism of global search to maintain a good research population diversity and expand the algorithm’s global search capability, and the dimension-by-dimension evaluation mechanism is added, which can effectively improve the quality of the solution and balance the global search and local development capability. To substantiate the efficacy of the enhanced algorithm, the proposed algorithm is then tested on a set of 23 benchmark test functions. It is also used to solve four classical engineering design problems, with great progress. In terms of test functions, the experimental results and analysis show that the proposed method is effective and better than other well-known nature-inspired algorithms in terms of convergence speed and accuracy. Additionally, the results of the solution of the engineering problems demonstrate the merits of this algorithm in solving challenging problems with constrained and unknown search spaces.


2017 ◽  
Vol 5 (2) ◽  
pp. 249-273 ◽  
Author(s):  
Rizk M. Rizk-Allah

Abstract This paper presents a new algorithm based on hybridizing the sine cosine algorithm (SCA) with a multi-orthogonal search strategy (MOSS), named multi-orthogonal sine cosine algorithm (MOSCA), for solving engineering design problems. The proposed MOSCA integrates the advantages of the SCA and MOSS to eliminate SCA's disadvantages, like unbalanced exploitation and the trapping in local optima. The proposed MOSCA works in two stages, firstly, the SCA phase starts the search process to enhance exploration capability. Secondly, the MOSS phase starts its search from SCA found so far to boost the exploitation tendencies. In this regard, MOSS phase can assist SCA phase to search based on deeper exploration/exploitation patterns as an alternative. Therefore, the MOSCA can be more robust, statistically sound, and quickly convergent. The performance of the MOSCA algorithm is investigated by applying it on eighteen benchmark problems and four engineering design problems. The experimental results indicate that MOSCA is a promising algorithm and outperforms the other algorithms in most cases. Highlights MOSCA is presented to solve design and manufacturing optimization problems efficiently. MOSCA is based on two phases namely, sine cosine algorithm (SCA) and multi-orthogonal search strategy (MOSS). The integrated MOSCA enhances exploration tendency and exploitation capability. The MOSCA can be more robust, statistically sound, and quickly convergent. New approach produced successful results compared to the literature studies.


2021 ◽  
Vol 2021 ◽  
pp. 1-22
Author(s):  
An-Di Tang ◽  
Shang-Qin Tang ◽  
Tong Han ◽  
Huan Zhou ◽  
Lei Xie

Slime mould algorithm (SMA) is a population-based metaheuristic algorithm inspired by the phenomenon of slime mould oscillation. The SMA is competitive compared to other algorithms but still suffers from the disadvantages of unbalanced exploitation and exploration and is easy to fall into local optima. To address these shortcomings, an improved variant of SMA named MSMA is proposed in this paper. Firstly, a chaotic opposition-based learning strategy is used to enhance population diversity. Secondly, two adaptive parameter control strategies are proposed to balance exploitation and exploration. Finally, a spiral search strategy is used to help SMA get rid of local optimum. The superiority of MSMA is verified in 13 multidimensional test functions and 10 fixed-dimensional test functions. In addition, two engineering optimization problems are used to verify the potential of MSMA to solve real-world optimization problems. The simulation results show that the proposed MSMA outperforms other comparative algorithms in terms of convergence accuracy, convergence speed, and stability.


Author(s):  
Sankalap Arora ◽  
Priyanka Anand

Butterfly Optimization Algorithm (BOA) is a novel meta-heuristic algorithm inspired by the food foraging behavior of the butterflies. The performance of BOA critically depends upon the probability parameter which decides whether the butterfly has to move towards the best butterfly of the population or perform a random search. Therefore, in order to increase the potential of the BOA, which focuses on exploration phase in the initial stages and on exploitation in the later stages of the optimization, learning automata have been embedded in BOA in which a learning automaton takes the role of configuring the behavior of a butterfly in order to create a proper balance between the process of global and local search. The introduction of learning automata accelerates the global convergence speed to the true global optimum while preserving the main feature of the basic BOA. In order to validate the effectiveness of the proposed algorithm, it is evaluated on 17 benchmark test functions and 3 classical engineering design problems with different characteristics, having real-world applications. The simulation results demonstrate that the introduction of learning automata in BOA has significantly boosted the performance of BOA in terms of achievement of true global optimum and avoidance of local optima entrapment.


Author(s):  
Prachi Agrawal ◽  
Talari Ganesh ◽  
Ali Wagdy Mohamed

AbstractThis article proposes a novel binary version of recently developed Gaining Sharing knowledge-based optimization algorithm (GSK) to solve binary optimization problems. GSK algorithm is based on the concept of how humans acquire and share knowledge during their life span. A binary version of GSK named novel binary Gaining Sharing knowledge-based optimization algorithm (NBGSK) depends on mainly two binary stages: binary junior gaining sharing stage and binary senior gaining sharing stage with knowledge factor 1. These two stages enable NBGSK for exploring and exploitation of the search space efficiently and effectively to solve problems in binary space. Moreover, to enhance the performance of NBGSK and prevent the solutions from trapping into local optima, NBGSK with population size reduction (PR-NBGSK) is introduced. It decreases the population size gradually with a linear function. The proposed NBGSK and PR-NBGSK applied to set of knapsack instances with small and large dimensions, which shows that NBGSK and PR-NBGSK are more efficient and effective in terms of convergence, robustness, and accuracy.


Symmetry ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 48
Author(s):  
Jin Zhang ◽  
Li Hong ◽  
Qing Liu

The whale optimization algorithm is a new type of swarm intelligence bionic optimization algorithm, which has achieved good optimization results in solving continuous optimization problems. However, it has less application in discrete optimization problems. A variable neighborhood discrete whale optimization algorithm for the traveling salesman problem (TSP) is studied in this paper. The discrete code is designed first, and then the adaptive weight, Gaussian disturbance, and variable neighborhood search strategy are introduced, so that the population diversity and the global search ability of the algorithm are improved. The proposed algorithm is tested by 12 classic problems of the Traveling Salesman Problem Library (TSPLIB). Experiment results show that the proposed algorithm has better optimization performance and higher efficiency compared with other popular algorithms and relevant literature.


Sign in / Sign up

Export Citation Format

Share Document