Heterogeneous Fenton-like oxidation of monochlorobenzene using green synthesis of iron nanoparticles

2013 ◽  
Vol 410 ◽  
pp. 67-73 ◽  
Author(s):  
Ye Kuang ◽  
Qingping Wang ◽  
Zuliang Chen ◽  
Mallavarapu Megharaj ◽  
Ravendra Naidu
2020 ◽  
Vol 149 ◽  
pp. 105793
Author(s):  
Kun Rong ◽  
Jinye Wang ◽  
Zaiwang Zhang ◽  
Jiqiang Zhang

2018 ◽  
Vol 16 ◽  
pp. 54-62 ◽  
Author(s):  
Helale Kaboli Farshchi ◽  
Majid Azizi ◽  
Mahmoud Reza Jaafari ◽  
Seyyd Hossien Nemati ◽  
Amir Fotovat

2021 ◽  
Vol 10 ◽  
Author(s):  
Venkata Subbaiah Kotakadi ◽  
Bhulakshmi Kolapalli ◽  
Susmila Aparna Gaddam ◽  
Sai Gopal Divi Venkata Ramana

Background: There is an increasing commercial demand for nanoparticles due to their wide applicability in various areas such as chemistry, catalysis, energy and medicine. Metallic nanoparticles are traditionally synthesized by wet chemical techniques where the chemicals used are quite often toxic and flammable. Objective: In the present study, we described a simple, cost effective and environmentally-friendly technique for green synthesis of silver and iron nanoparticles by using the aqueous extract of leafy vegetable Amaranthus viridis as a reducing agent. Methods: The silver and Iron nanoparticles (Av-AgNPs, Av-IONPs) were characterized by different spectral methods. The surface Plasmon resonance spectrums of Av-AgNPs, Av-IONPs were recorded at 422nm and 261nm. The Scanning electron microscopy (SEM) analysis reveals that the Av-AgNPs, Av-IONPs are roughly spherical in shape. Energy dispersive absorption spectroscopy (EDAX) of biosynthesized Av-AgNPs, Av-IONPs indicates the reduction of silver ions to elemental silver and iron ions to elemental iron. Results: The particle size analysis of Av-AgNPs and Av-IONPs was carried out by Dynamic light scattering (DLS) method the results reveal that both Av-AgNPs and Av-IONPs were polydispered in nature. The average particle size of Av-AgNPs is 55.8 nm with a polydispered index (PI) of 0.297, similarly the average particle size of Av-IONPs is 80.6 nm with an polydispered index (PI) of 0.469. Zeta-potential of Av-AgNPs was detected at -24.6 mV and Av-IONPs were detected at 28.8 mV, the result reveals that they high stability due their high negative charge and positive charge respectively. The dual synthesized Av-AgNPs, Av-IONPs exhibits excellent antioxidant activity by DPPH, H2O2 and NO methods. DPPH was proven to be the best when compared with the other two methods. The biosynthesized Av-AgNPs, Av-IONPs proved to have very good antimicrobial activity against gram +ve and gram –ve bacteria. Conclusion: when compared with standard antibiotic. There were several reports on green synthesis of metal nanoparticles using various plant parts, but here edible leafy vegetable Amaranthus viridis was used for biosynthesis of both Av-AgNPs and Av-IONPs.


Sign in / Sign up

Export Citation Format

Share Document