Adsorption of organic molecules on carbon surfaces: Experimental data and molecular dynamics simulation considering multiple protonation states

Author(s):  
Robin Wagner ◽  
Saientan Bag ◽  
Tatjana Trunzer ◽  
Paula Fraga-García ◽  
Wolfgang Wenzel ◽  
...  
2006 ◽  
Vol 129 (6) ◽  
pp. 705-716 ◽  
Author(s):  
Jennifer R. Lukes ◽  
Hongliang Zhong

Despite the significant amount of research on carbon nanotubes, the thermal conductivity of individual single-wall carbon nanotubes has not been well established. To date only a few groups have reported experimental data for these molecules. Existing molecular dynamics simulation results range from several hundred to 6600 W∕m K and existing theoretical predictions range from several dozens to 9500 W∕m K. To clarify the several-order-of-magnitude discrepancy in the literature, this paper utilizes molecular dynamics simulation to systematically examine the thermal conductivity of several individual (10, 10) single-wall carbon nanotubes as a function of length, temperature, boundary conditions and molecular dynamics simulation methodology. Nanotube lengths ranging from 5 nm to 40 nm are investigated. The results indicate that thermal conductivity increases with nanotube length, varying from about 10 W∕m to 375 W∕m K depending on the various simulation conditions. Phonon decay times on the order of hundreds of fs are computed. These times increase linearly with length, indicating ballistic transport in the nanotubes. A simple estimate of speed of sound, which does not require involved calculation of dispersion relations, is presented based on the heat current autocorrelation decay. Agreement with the majority of theoretical/computational literature thermal conductivity data is achieved for the nanotube lengths treated here. Discrepancies in thermal conductivity magnitude with experimental data are primarily attributed to length effects, although simulation methodology, stress, and intermolecular potential may also play a role. Quantum correction of the calculated results reveals thermal conductivity temperature dependence in qualitative agreement with experimental data.


Author(s):  
Tolga Akıner ◽  
Hakan Ertürk ◽  
Kunt Atalık

Nanofluids are new class of fluids which can be used for many engineering applications due to their enhanced thermal properties. The macroscopic modeling tools used for flow simulations usually rely on effective thermal and rheological properties of the nanofluids that can be predicted through various effective medium theories. As these theories significantly under-predict, using correlations based on experimental data is considered as the only reliable means for prediction of these effective properties. However, the behavior might change significantly once the particle material or base fluid change due to different particle fluid interactions in the molecular level. One of the most promising means of modeling effective properties of the nanofluids is the molecular dynamics simulations where all the intermolecular effects can be modeled. This study investigates equilibrium molecular dynamics simulation of the water-Cu nanofluids to predict the thermal and rheological properties. The molecular dynamics simulation is carried out to achieve a thermodynamic equilibrium, based on a state that is defined by targeted thermodynamic properties of the system. The Green-Kubo method is used to predict the thermal conductivity and viscosity of the system. The study considers the use of different combining rules such as Lorentz-Berthelot and sixth-power rules for defining the inter-atomic potentials for water modeled by SPC/E and nanoparticles modeled by Lennard-Jones potential. The predicted effective properties that are thermal conductivity and shear viscosity are then compared with experimental data from literature. The predicted transport properties at different temperatures and particle concentrations are compared to experimental data from literature for model validation.


Author(s):  
Hongliang Zhong ◽  
Jennifer R. Lukes

Despite the significant amount of research on single-wall carbon nanotubes, their thermal conductivity has not been well established. To date only one experimental thermal conductivity measurement has been reported for these molecules around room temperature, with large uncertainty in the thermal conductivity values. Existing theoretical predictions based on molecular dynamics simulation range from several hundred to 6600 W/m-K. In an attempt to clarify the order-of magnitude discrepancy in the literature, this paper utilizes molecular dynamics simulation to systematically examine the thermal conductivity of several (10, 10) single-wall carbon nanotubes as a function of length, temperature, boundary conditions and molecular dynamics simulation methodology. The present results indicate that thermal conductivity ranges from about 30–300 W/m-K depending on the various simulation conditions. The results are unconverged and keep increasing at the longest tube length, 40 nm. Agreement with the majority of literature data is achieved for the tube lengths treated here. Discrepancies in thermal conductivity magnitude with experimental data are primarily attributed to length effects, although simulation methodology, stress, and intermolecular potential may also play a role. Quantum correction of the calculated results reveals thermal conductivity temperature dependence in qualitative agreement with experimental data.


2017 ◽  
Vol 121 (42) ◽  
pp. 9929-9935 ◽  
Author(s):  
Yoshitake Suganuma ◽  
Satoru Yamamoto ◽  
Tomoyuki Kinjo ◽  
Takuya Mitsuoka ◽  
Kazuhiko Umemoto

Sign in / Sign up

Export Citation Format

Share Document