Overnight Control with Single-Hormone and Dual-Hormone Artificial Pancreas Systems in Type 1 Diabetes: An Outpatient Randomized Trial—Preliminary Results

2014 ◽  
Vol 38 (5) ◽  
pp. S16
Author(s):  
Rohan Rakheja ◽  
Ahmad Haidar ◽  
Émilie D'aoust ◽  
Andrej Orszag ◽  
Marcello Falappa ◽  
...  
2019 ◽  
Vol 13 (6) ◽  
pp. 1017-1025 ◽  
Author(s):  
Pau Herrero ◽  
Mohamed El-Sharkawy ◽  
John Daniels ◽  
Narvada Jugnee ◽  
Chukwuma N. Uduku ◽  
...  

Background: Artificial pancreas (AP) technology has been proven to improve glucose and patient-centered outcomes for people with type 1 diabetes (T1D). Several approaches to implement the AP have been described, clinically evaluated, and in one case, commercialized. However, none of these approaches has shown a clear superiority with respect to others. In addition, several challenges still need to be solved before achieving a fully automated AP that fulfills the users’ expectations. We have introduced the Bio-inspired Artificial Pancreas (BiAP), a hybrid adaptive closed-loop control system based on beta-cell physiology and implemented directly in hardware to provide an embedded low-power solution in a dedicated handheld device. In coordination with the closed-loop controller, the BiAP system incorporates a novel adaptive bolus calculator which aims at improving postprandial glycemic control. This paper focuses on the latest developments of the BiAP system for its utilization in the home environment. Methods: The hardware and software architectures of the BiAP system designed to be used in the home environment are described. Then, the clinical trial design proposed to evaluate the BiAP system in an ambulatory setting is introduced. Finally, preliminary results corresponding to two participants enrolled in the trial are presented. Results: Apart from minor technical issues, mainly due to wireless communications between devices, the BiAP system performed well (~88% of the time in closed-loop) during the clinical trials conducted so far. Preliminary results show that the BiAP system might achieve comparable glycemic outcomes to the existing AP systems (~73% time in target range 70-180 mg/dL). Conclusion: The BiAP system is a viable platform to conduct ambulatory clinical trials and a potential solution for people with T1D to control their glucose control in a home environment.


2021 ◽  
Author(s):  
Marco Infante ◽  
David A. Baidal ◽  
Michael R. Rickels ◽  
Andrea Fabbri ◽  
Jay S. Skyler ◽  
...  

2018 ◽  
Vol 12 (2) ◽  
pp. 273-281 ◽  
Author(s):  
Roberto Visentin ◽  
Enrique Campos-Náñez ◽  
Michele Schiavon ◽  
Dayu Lv ◽  
Martina Vettoretti ◽  
...  

Background: A new version of the UVA/Padova Type 1 Diabetes (T1D) Simulator is presented which provides a more realistic testing scenario. The upgrades to the previous simulator, which was accepted by the Food and Drug Administration in 2013, are described. Method: Intraday variability of insulin sensitivity (SI) has been modeled, based on clinical T1D data, accounting for both intra- and intersubject variability of daily SI. Thus, time-varying distributions of both subject’s basal insulin infusion and insulin-to-carbohydrate ratio were calculated and made available to the user. A model of “dawn” phenomenon based on clinical T1D data has been also included. Moreover, the model of subcutaneous insulin delivery has been updated with a recently developed model of commercially available fast-acting insulin analogs. Models of both intradermal and inhaled insulin pharmacokinetics have been included. Finally, new models of error affecting continuous glucose monitoring and self-monitoring of blood glucose devices have been added. Results: One hundred in silico adults, adolescent, and children have been generated according to the above modifications. The new simulator reproduces the intraday glucose variability observed in clinical data, also describing the nocturnal glucose increase, and the simulated insulin profiles reflect real life data. Conclusions: The new modifications introduced in the T1D simulator allow to extend its domain of validity from “single-meal” to “single-day” scenarios, thus enabling a more realistic framework for in silico testing of advanced diabetes technologies including glucose sensors, new insulin molecules and artificial pancreas.


2003 ◽  
Vol 20 (4) ◽  
pp. 312-318 ◽  
Author(s):  
J. H. DeVries ◽  
A. Lindholm ◽  
J. L. Jacobsen ◽  
R. J. Heine ◽  
P. D. Home ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document