83 - INS rs3842753 SNP Genotype Associated With Type 1 Diabetes Risk Modulates Insulin mRNA Expression Distribution in Single Nondiabetic Human Beta Cells

2020 ◽  
Vol 44 (7) ◽  
pp. S32-S33
Author(s):  
Su Wang ◽  
Stephane Flibotte ◽  
Joan Camunas-Soler ◽  
Patrick E. Macdonald ◽  
James Johnson
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jessica R. Chaffey ◽  
Jay Young ◽  
Kaiyven A. Leslie ◽  
Katie Partridge ◽  
Pouria Akhbari ◽  
...  

AbstractThe generation of a human pancreatic beta cell line which reproduces the responses seen in primary beta cells, but is amenable to propagation in culture, has long been an important goal in diabetes research. This is particularly true for studies focussing on the role of enteroviral infection as a potential cause of beta-cell autoimmunity in type 1 diabetes. In the present work we made use of a clonal beta cell line (1.1B4) available from the European Collection of Authenticated Cell Cultures, which had been generated by the fusion of primary human beta-cells with a pancreatic ductal carcinoma cell, PANC-1. Our goal was to study the factors allowing the development and persistence of a chronic enteroviral infection in human beta-cells. Since PANC-1 cells have been reported to support persistent enteroviral infection, the hybrid 1.1B4 cells appeared to offer an ideal vehicle for our studies. In support of this, infection of the cells with a Coxsackie virus isolated originally from the pancreas of a child with type 1 diabetes, CVB4.E2, at a low multiplicity of infection, resulted in the development of a state of persistent infection. Investigation of the molecular mechanisms suggested that this response was facilitated by a number of unexpected outcomes including an apparent failure of the cells to up-regulate certain anti-viral response gene products in response to interferons. However, more detailed exploration revealed that this lack of response was restricted to molecular targets that were either activated by, or detected with, human-selective reagents. By contrast, and to our surprise, the cells were much more responsive to rodent-selective reagents. Using multiple approaches, we then established that populations of 1.1B4 cells are not homogeneous but that they contain a mixture of rodent and human cells. This was true both of our own cell stocks and those held by the European Collection of Authenticated Cell Cultures. In view of this unexpected finding, we developed a strategy to harvest, isolate and expand single cell clones from the heterogeneous population, which allowed us to establish colonies of 1.1B4 cells that were uniquely human (h1.1.B4). However, extensive analysis of the gene expression profiles, immunoreactive insulin content, regulated secretory pathways and the electrophysiological properties of these cells demonstrated that they did not retain the principal characteristics expected of human beta cells. Our data suggest that stocks of 1.1B4 cells should be evaluated carefully prior to their use as a model human beta-cell since they may not retain the phenotype expected of human beta-cells.


2017 ◽  
Vol 26 (3) ◽  
pp. 568-575.e3 ◽  
Author(s):  
Clive Wasserfall ◽  
Harry S. Nick ◽  
Martha Campbell-Thompson ◽  
Dawn Beachy ◽  
Leena Haataja ◽  
...  

2012 ◽  
Vol 13 (3) ◽  
pp. 283-289 ◽  
Author(s):  
Anna M Bulek ◽  
David K Cole ◽  
Ania Skowera ◽  
Garry Dolton ◽  
Stephanie Gras ◽  
...  

Diabetes ◽  
2021 ◽  
Vol 70 (Supplement 1) ◽  
pp. 248-OR
Author(s):  
WIKTORIA RATAJCZAK ◽  
SARAH ATKINSON ◽  
CATRIONA KELLY

2021 ◽  
Author(s):  
Sofia Thomaidou ◽  
Roderick C. Slieker ◽  
Arno R. van der Slik ◽  
Jasper Boom ◽  
Flip Mulder ◽  
...  

Type 1 diabetes is an autoimmune disease characterized by autoreactive T-cell mediated destruction of the insulin-producing pancreatic beta-cells. Increasing evidence suggest that the beta-cells themselves contribute to their own destruction by generating neo-antigens through the production of aberrant or modified proteins that escape central tolerance. We have recently demonstrated that ribosomal infidelity amplified by stress could lead to the generation of neoantigens in human beta-cells, emphasizing the participation of nonconventional translation events to autoimmunity, as occurring in cancer or virus-infected tissues. Using a transcriptome-wide profiling approach to map translation initiation start sites in human beta-cells under standard and inflammatory conditions, we identify a completely new set of polypeptides derived from non-canonical start sites and translation initiation within lncRNA. Our data underline the extreme diversity of the beta-cell translatome and may reveal new functional biomarkers for beta-cell distress, disease prediction and progression and therapeutic intervention in type 1 diabetes.


2021 ◽  
Author(s):  
Sofia Thomaidou ◽  
Roderick C. Slieker ◽  
Arno R. van der Slik ◽  
Jasper Boom ◽  
Flip Mulder ◽  
...  

Type 1 diabetes is an autoimmune disease characterized by autoreactive T-cell mediated destruction of the insulin-producing pancreatic beta-cells. Increasing evidence suggest that the beta-cells themselves contribute to their own destruction by generating neo-antigens through the production of aberrant or modified proteins that escape central tolerance. We have recently demonstrated that ribosomal infidelity amplified by stress could lead to the generation of neoantigens in human beta-cells, emphasizing the participation of nonconventional translation events to autoimmunity, as occurring in cancer or virus-infected tissues. Using a transcriptome-wide profiling approach to map translation initiation start sites in human beta-cells under standard and inflammatory conditions, we identify a completely new set of polypeptides derived from non-canonical start sites and translation initiation within lncRNA. Our data underline the extreme diversity of the beta-cell translatome and may reveal new functional biomarkers for beta-cell distress, disease prediction and progression and therapeutic intervention in type 1 diabetes.


2019 ◽  
Vol 63 (2) ◽  
pp. 139-149 ◽  
Author(s):  
Fabio Arturo Grieco ◽  
Andrea Alex Schiavo ◽  
Flora Brozzi ◽  
Jonas Juan-Mateu ◽  
Marco Bugliani ◽  
...  

miRNAs are a class of small non-coding RNAs that regulate gene expression. Type 1 diabetes is an autoimmune disease characterized by insulitis (islets inflammation) and pancreatic beta cell destruction. The pro-inflammatory cytokines interleukin 1 beta (IL1B) and interferon gamma (IFNG) are released during insulitis and trigger endoplasmic reticulum (ER) stress and expression of pro-apoptotic members of the BCL2 protein family in beta cells, thus contributing to their death. The nature of miRNAs that regulate ER stress and beta cell apoptosis remains to be elucidated. We have performed a global miRNA expression profile on cytokine-treated human islets and observed a marked downregulation of miR-211-5p. By real-time PCR and Western blot analysis, we confirmed cytokine-induced changes in the expression of miR-211-5p and the closely related miR-204-5p and downstream ER stress related genes in human beta cells. Blocking of endogenous miRNA-211-5p and miR-204-5p by the same inhibitor (it is not possible to block separately these two miRs) increased human beta cell apoptosis, as measured by Hoechst/propidium Iodide staining and by determination of cleaved caspase-3 activation. Interestingly, miRs-211-5p and 204-5p regulate the expression of several ER stress markers downstream of PERK, particularly the pro-apoptotic protein DDIT3 (also known as CHOP). Blocking CHOP expression by a specific siRNA partially prevented the increased apoptosis observed following miR-211-5p/miR-204-5p inhibition. These observations identify a novel crosstalk between miRNAs, ER stress and beta cell apoptosis in early type 1 diabetes.


Sign in / Sign up

Export Citation Format

Share Document