Characteristics of compound asphalt modified by waste tire rubber (WTR) and ethylene vinyl acetate (EVA): Conventional, rheological, and microstructural properties

2020 ◽  
Vol 258 ◽  
pp. 120732 ◽  
Author(s):  
Kezhen Yan ◽  
Jinghao Chen ◽  
Lingyun You ◽  
Shan Tian
2021 ◽  
Vol 28 (10) ◽  
Author(s):  
Suganti Ramarad ◽  
Chantara Thevy Ratnam ◽  
Yamuna Munusamy ◽  
Nor Azura Abdul Rahim ◽  
Mathialagan Muniyadi

AbstractWaste tire rubber is commonly recycled by blending with other polymers. However, the mechanical properties of these blends were poor due to lack of adhesion between the matrix and the waste tire rubber. In this research, the use of electron beam irradiation and (3-Aminopropyl)triethoxy silane (APTES) on enhancing the performance of 50 wt% reclaimed tire rubber (RTR) blend with 50 wt% poly(ethylene-co-vinyl acetate) (EVA) was investigated. Preparation of RTR/EVA blends were carried out in the internal mixer. The blends were then exposed to electron beam (EB) irradiation at doses ranging from 50 to 200 kGy. APTES loading was varied between 1 to 10 wt%. The processing, morphological, mechanical, and calorimetric properties of the blends were investigated. The stabilization torque and total mixing energy was higher in compatibilized blends. Mechanical properties of RTR/EVA blends were improved due to efficiency of APTES in further reclaiming the RTR and compatibilizing the blends. APTES improved the dispersion of embedded smaller RTR particles in EVA matrix and crosslinking efficiency of the blends. Calorimetric studies showed increased crystallinity in compatibilized blends which corresponds to improved mechanical properties. However, the ductility of the blend was decreased due to increased interaction between EVA and APTES. Presence of APTES increased the efficiency of electron beam irradiation induced crosslinking which was shown through gel content analysis and Charlesby-Pinner equation.


2002 ◽  
Vol 84 (3) ◽  
pp. 622-631 ◽  
Author(s):  
Amit K. Naskar ◽  
Anil K. Bhowmick ◽  
S. K. De

2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Bo Chen ◽  
Liping Guo ◽  
Wei Sun

For improving bending toughness and fatigue performance of brittle cement-based composites, two types of water-soluble polymers (such as dispersible latex powder and polyvinyl alcohol powder) and waste tire-rubber powders are added to concrete as admixtures. Multiscale toughening mechanisms of these additions in concretes were comprehensively investigated. Four-point bending fatigue performance of four series concretes is conducted under a stress level of 0.70. The results show that the effects of dispersible latex powder on bending toughness and fatigue life of concrete are better than those of polyvinyl alcohol powder. Furthermore, the bending fatigue lives of concrete simultaneously containing polymers and waste rubber powders are larger than those of concrete with only one type of admixtures. The multiscale physics-chemical mechanisms show that high bonding effect and high elastic modulus of polymer films as well as good elastic property and crack-resistance of waste tire-rubber powders are beneficial for improving bending toughness and fatigue life of cementitious composites.


2018 ◽  
Vol 6 (3) ◽  
pp. 035703 ◽  
Author(s):  
Tej Singh ◽  
Mukesh Kumar Rathi ◽  
Amar Patnaik ◽  
Ranchan Chauhan ◽  
Sharafat Ali ◽  
...  

2007 ◽  
Vol 28 (7) ◽  
pp. 2234-2238 ◽  
Author(s):  
D. García ◽  
J. López ◽  
R. Balart ◽  
R.A. Ruseckaite ◽  
P.M. Stefani

2010 ◽  
Vol 75 (6) ◽  
pp. 845-853 ◽  
Author(s):  
Hassan Mousavi ◽  
Abdorrahman Hosseinifar ◽  
Vahdat Jahed

The influence of pH, adsorbent dose, initial Cu(II) concentration and contact time on the removal of Cu(II) from aqueous solution by the batch adsorption technique using waste tire rubber ash as a low-cost adsorbent was investigated. The adsorption equilibrium was achieved after 2 h at pH 4-6, the optimum for the adsorption of Cu(II) ions. A dose of 1.5 g/L of adsorbent was sufficient for the optimum removal of copper ions. The experimental data were analyzed by the Langmuir and Freundlich isotherms and the corresponding sorption constants were evaluated. The adsorption kinetics data were fitted by a first-order equation. The cost of removal is expected to be quite low, as the adsorbent is cheap and easily available in large quantities. The present study showed that waste tire rubber ash was capable of removing copper ions from industrial wastewater samples.


Sign in / Sign up

Export Citation Format

Share Document