scholarly journals Integration of life cycle assessment and life cycle cost using building information modeling: A critical review

2021 ◽  
Vol 285 ◽  
pp. 125438
Author(s):  
Kun Lu ◽  
Xiaoyan Jiang ◽  
Jingyu Yu ◽  
Vivian W.Y. Tam ◽  
Martin Skitmore
Author(s):  
Veerasak Likhitruangsilp ◽  
Hang T. T. Le ◽  
Nobuyoshi Yabuki ◽  
Photios G. Ioannou

In recent years, the fierce competition in worldwide real-estate market has pushed the stakeholders towards the sustainability for buildings. Life-cycle cost (LCC) is an effective economic evaluation tool that provides a detailed account for all costs related to constructing, operating, maintaining, and disposing a construction project over a defined period of time. Awareness of better value of money throughout the LCC is beyond the initial price. Governments and Contracting authorities add the LCC as a key provision in the context of National Codes and Council Directives to promote the growth of sustainability concept. Current LCC analytical methods are costly, laborious, and time-consuming due to the difficulties of obtaining information and implementing many single LCC analyses for all building elements, which may be attributed to the inaccuracy of results. Building information modeling (BIM) is a modern technology that can potentially overcome the asperities that obstruct practical LCC implementation. This paper develops a new automated system for performing LCC analyses for new building projects by integrating BIM authoring programming with visual programming. The proposed system consists of two main modules. The BIM module is designed to retrieve 3D geometric and physical parameters of building element types. The life-cycle cost calculation module can perform automatic estimating and report results. This system provides an economic evaluation tool for the owner to manage the total life-cycle budget of their projects.


2019 ◽  
Vol 11 (22) ◽  
pp. 6274 ◽  
Author(s):  
Kun Lu ◽  
Xiaoyan Jiang ◽  
Vivian W. Y. Tam ◽  
Mengyun Li ◽  
Hongyu Wang ◽  
...  

Buildings produce a large amount of carbon emissions in their life cycle, which intensifies greenhouse-gas effects and has become a great threat to the survival of humans and other species. Although many previous studies shed light on the calculation of carbon emissions, a systematic analysis framework is still missing. Therefore, this study proposes an analysis framework of carbon emissions based on building information modeling (BIM) and life cycle assessment (LCA), which consists of four steps: (1) defining the boundary of carbon emissions in a life cycle; (2) establishing a carbon emission coefficients database for Chinese buildings and adopting Revit, GTJ2018, and Green Building Studio for inventory analysis; (3) calculating carbon emissions at each stage of the life cycle; and (4) explaining the calculation results of carbon emissions. The framework developed is validated using a case study of a hospital project, which is located in areas in Anhui, China with a hot summer and a cold winter. The results show that the reinforced concrete engineering contributes to the largest proportion of carbon emissions (around 49.64%) in the construction stage, and the HVAC (heating, ventilation, and air conditioning) generates the largest proportion (around 53.63%) in the operational stage. This study provides a practical reference for similar buildings in analogous areas and for additional insights on reducing carbon emissions in the future.


Sign in / Sign up

Export Citation Format

Share Document