Consideration of streamflow forecast uncertainty in the development of short-term hydropower station optimal operation schemes: A novel approach based on mean-variance theory

2021 ◽  
pp. 126929
Author(s):  
Yuan Liu ◽  
Chang-ming Ji ◽  
Yi Wang ◽  
Yanke Zhang ◽  
Xiaoning Hou ◽  
...  
Water ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 504
Author(s):  
Jiqing Li ◽  
May Myat Moe Saw ◽  
Siyu Chen ◽  
Hongjie Yu

The short-term optimal operation model discussed in this paper uses the 2016 to 2018 daily and monthly data of Baluchaung II hydropower station to optimize power generation by minimizing water consumption effectively in order to get more revenue from optimal operation. In the first stage, run-off-river type Baluchaung II hydropower station data was applied in a mathematical model of equal micro-increment rate method for optimal hydropower generation flow distribution unit results. In the second stage, dynamic programming was used to get optimal hydropower generation unit distribution results. The resultant data indicated that optimized results can effectively guide the actual operation run of this power station. The purpose of the optimal load dispatching unit was to consider the optimal power of each unit for financial profit and numerical programming on the actual data of Baluchaung II hydropower plant to confirm that our methods are able to find good optimal solutions which satisfy the objective values of 17.75% in flow distribution units and 24.16% in load distribution units.


2011 ◽  
Vol 347-353 ◽  
pp. 1370-1373
Author(s):  
Jiao Zheng ◽  
Kan Yang ◽  
Ran Zhou ◽  
Yong Huai Hao ◽  
Guo Shuai Liu

The short-term joint optimal operation simulation of Three Gorges cascade hydropower system aiming at maximum power generation benefit is proposed. And a new method for optimizing cascade hydropower station based on Adaptive Genetic Algorithm (AGA) with trigonometric selective operators is presented. In this paper, the practical optimal operation in power market is described. The temporal-spatial variation of flow between cascade hydropower stations is considered, and time of use (TOU) power price is also taken into account. Moreover, a contrast between Tangent-roulette selection operator and traditional one is made. To a certain degree, the results of simulative optimal operation based on several representative hydrographs show that Tangent-roulette wheel selection operator can find a more excellent solution, because the Tangent-roulette one can overcome the fitness requirements of non-negative. The research achievements also have an important reference for the compilation of daily generation scheduling of Three Gorges cascade hydropower system in the environment of power market.


2018 ◽  
Vol 2018 ◽  
pp. 1-29
Author(s):  
Zhe Yang ◽  
Kan Yang ◽  
Lyuwen Su ◽  
Hu Hu

The short-term hydro generation scheduling (STHGS) decomposed into unit commitment (UC) and economic load dispatch (ELD) subproblems is complicated problem with integer optimization, which has characteristics of high dimension, nonlinear and complex hydraulic and electrical constraints. In this study, the improved binary-real coded shuffled frog leaping algorithm (IBR-SFLA) is proposed to effectively solve UC and ELD subproblems, respectively. For IB-SFLA, the new grouping strategy is applied to overcome the grouping shortage of SFLA, and modified search strategies for each type of frog subpopulation based on normal cloud model (NCM) and chaotic theory are introduced to enhance search performance. The initialization strategy with chaos theory and adaptive frog activation mechanism are presented to strengthen performance of IR-SFLA on ELD subproblem. Furthermore, to solve ELD subproblem, the optimal economic operation table is formed using IR-SFLA and invoked from database. Moreover, reserve capacity supplement and repair, and minimum on and off time repairing strategies are applied to handle complex constraints in STHGS. Finally, the coupled external and internal model corresponding to UC and ELD subproblems is established and applied to solve STHGS problem in Three Gorges hydropower station. Simulation results obtained from IBR-SFLA are better than other compared algorithms with less water consumption. In conclusion, to solve STHGS optimization problem, the proposed IBR-SFLA presents outstanding performance on solution precision and convergence speed compared to traditional SFLA effectively and outperforms the rivals to get higher precision solution with improving the utilization rate of waterpower resources.


2015 ◽  
Vol 29 (5) ◽  
pp. 1635-1651 ◽  
Author(s):  
Dirk Schwanenberg ◽  
Fernando Mainardi Fan ◽  
Steffi Naumann ◽  
Julio Issao Kuwajima ◽  
Rodolfo Alvarado Montero ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document