scholarly journals Joint Optimal Operation of Wind Power Plant and Cascade Hydropower Station

Author(s):  
Di Jiang ◽  
Mingkai Wang ◽  
Wentao Sun ◽  
Yang Wu
2019 ◽  
Author(s):  
Kaushik Das ◽  
Anatole Louis Theodore Philippe Grapperon ◽  
Poul Ejnar Sørensen ◽  
Anca Daniela Hansen

<div>In order to participate in energy market, variable renewable energy sources need to reduce the uncertainty of forecast errors. Inclusion of storage can be a viable option not only to minimize the penalties due to forecast uncertainties but also to maximize the revenue generation. This paper presents a</div><div>decision framework for respecting the market constraints and maximise the revenues of a wind and storage power plant. Wind power and price forecast are used in convex optimisation algorithm for making day ahead decisions on battery operation. This day ahead optimisation results feed to an algorithm for operating in the balancing market. Several scenarios and case studies have been simulated to assess the value of storage for revenue maximization of a wind power plant. The results show that proposed algorithms can increase the revenue by more than 10% compared to the operation of wind power plant without battery.</div>


2019 ◽  
Author(s):  
Kaushik Das ◽  
Anatole Louis Theodore Philippe Grapperon ◽  
Poul Ejnar Sørensen ◽  
Anca Daniela Hansen

<div>In order to participate in energy market, variable renewable energy sources need to reduce the uncertainty of forecast errors. Inclusion of storage can be a viable option not only to minimize the penalties due to forecast uncertainties but also to maximize the revenue generation. This paper presents a</div><div>decision framework for respecting the market constraints and maximise the revenues of a wind and storage power plant. Wind power and price forecast are used in convex optimisation algorithm for making day ahead decisions on battery operation. This day ahead optimisation results feed to an algorithm for operating in the balancing market. Several scenarios and case studies have been simulated to assess the value of storage for revenue maximization of a wind power plant. The results show that proposed algorithms can increase the revenue by more than 10% compared to the operation of wind power plant without battery.</div>


Author(s):  
Giulio Guandalini ◽  
Stefano Campanari

In this work, the coupled operation of a wind park and a hydrogen power-to-gas (P2G) technology is addressed in order to improve dispatchability and profitability of the wind resource. Among many available storage technologies currently under development, the P2G was chosen because of its large storage capacity and fast response. In particular, oppositely to traditional storage approaches, the solution that considers the direct injection of hydrogen in the natural gas grid infrastructure could reduce investment costs and improve the renewable fraction of fuels. Economic optimal operation and installed P2G power are calculated solving a mixed-integer linear programming (MILP) problem. Performances of the main component (electrolysis unit) are modeled, including additional costs for start-up and partial load operation losses. Technical limits on both electric and natural gas grids are also included. Some assumptions on the economic rules governing the electric grid unbalance are made, according to possible evolutions of the regulation framework focused on EU and Italian system. The simulation is performed on hourly basis, assuming realistic forecasted and real power production profiles from an actual mid-size (30 MW) wind power plant, together with prices of electricity markets and gas production. A sensitivity analysis is also performed varying both economic and technical parameters. Whereas in some scenarios the technology is profitable with the current investment costs, a reduction of electrolyzer costs down to expected mid-term targets would lead to a stronger competitiveness in each scenario. The study aims at identifying the influence of main technical and economic parameters on the effectiveness of the power-to-gas technology. Results show how the proposed solution allows better exploiting the wind resource, although the net electricity production can decrease due to the production of hydrogen, suggesting the possibility to substantially oversize the wind park in order to cover the same electric load.


2017 ◽  
Author(s):  
Katherine L. Dykes ◽  
M. M. Hand ◽  
Eric J. Lantz ◽  
Tyler J. Stehly ◽  
Michael C. Robinson ◽  
...  

2017 ◽  
Vol 18 (2) ◽  
pp. 68
Author(s):  
Made Padmika ◽  
I Made Satriya Wibawa ◽  
Ni Luh Putu Trisnawati

A prototype of a wind power plant had been created using a ventilator  as a generator spiner. This power plant utilizes wind speed as its propulsion. Electricity generated in the DC voltage form between 0 volts up to 7.46 volts. The MT3608 module is used to stabilize and raise the voltage installed in the input and output of the charging circuit. For instrument testing, the wind speed on 0 m/s up to 6 m/s interval used. Maximum output of this tool with a wind speed of 6 m/s is 7.46 volts.


Sign in / Sign up

Export Citation Format

Share Document