Chemical recycling of plastic waste via thermocatalytic routes

2021 ◽  
pp. 128989
Author(s):  
Jechan Lee ◽  
Eilhann E. Kwon ◽  
Su Shiung Lam ◽  
Wei-Hsin Chen ◽  
Jörg Rinklebe ◽  
...  
2020 ◽  
Author(s):  
Megan Mohadjer Beromi ◽  
C. Rose Kennedy ◽  
Jarod M. Younker ◽  
Alex E. Carpenter ◽  
Sarah J. Mattler ◽  
...  

Closed-loop recycling offers the opportunity to help mitigate plastic waste through reversible polymer construction and deconstruction. While examples of the chemical recycling polymers are known, few have been applied to materials derived from abundant commodity olefinic monomers that are the building blocks of ubiquitous plastic resins. Here we describe a [2+2] cycloaddition oligomerization of 1,3-butadiene to yield a previously unrealized telechelic microstructure of (1,n’-divinyl)oligocyclobutane. This material is thermally stable, has stereoregular segments arising from chain-end control, and exhibits high crystallinity even at low molecular weight. Exposure of the oligocyclobutane to vacuum in the presence of the pyridine(diimine) iron precatalyst used to synthesize it resulted in deoligomerization to generate pristine butadiene, demonstrating a rare example of closed-loop chemical recycling of an oligomeric material derived from a commodity hydrocarbon feedstock.


2017 ◽  
Vol 69 ◽  
pp. 24-58 ◽  
Author(s):  
Kim Ragaert ◽  
Laurens Delva ◽  
Kevin Van Geem

2020 ◽  
Vol 118 ◽  
pp. 139-149
Author(s):  
Juan Baena-González ◽  
Arantzazu Santamaria-Echart ◽  
Juan Luis Aguirre ◽  
Sergio González

Author(s):  
Firuza Akhmetova ◽  
Yermek Aubakirov ◽  
Zheneta Tashmukhambetova ◽  
Larissa Sassykova ◽  
Huseyin Arbag ◽  
...  

Plastic waste production and consumption is increasing at an alarming rate with the increase of the human population, rapid economic growth, continuous urbanization, and changes in lifestyle. In addition, the short life span of plastic accelerates the production of plastic waste on a daily basis. Plastic waste recycling is carried out in different ways, but in most developing countries, open or landfill disposal is a common practice for plastic waste management. Plastic recycling into feedstocks, also known as chemical recycling, is encouraged all over the world. One such area is the thermal and catalytic thermal degradation of plastics into hydrocarbon fractions, which can be used as high-quality motor fuel after appropriate processing. Hydrocracking in the presence of a catalyst is a promising method of converting waste plastic materials to high quality liquid transportation fuels with decreased amounts of olefins and heteroatoms such as S, N, Cl, N, and O. The article deals with the study of hydrocracking of waste plastic into high quality liquid fuel on various catalysts based on natural zeolite deposits Taizhuzgen. The aim of the work is to determine the effect of new composite catalysts on the yield of liquid products by studying the specific surface and porous structure based on natural zeolite modified with Mо salt. It is established that the modification of natural zeolite with Mo affects the morphology of the catalyst, therefore, the obtained catalysts have different effects on the yield and composition of liquid fractions during the hydrogenation thermocatalytic transformation of hydrocarbons. The highest yield of liquid products (61.56%) was achieved using the 2% Mo/Taizhuzgen zeolite catalyst, which was chosen as optimal.


2002 ◽  
Vol 13 (2) ◽  
pp. 99-106 ◽  
Author(s):  
Yoshiki Sato ◽  
Kiyoshi Saito ◽  
Hideaki Tachibana

2022 ◽  
Vol 154 ◽  
pp. 111866
Author(s):  
Jijiang Huang ◽  
Andrei Veksha ◽  
Wei Ping Chan ◽  
Apostolos Giannis ◽  
Grzegorz Lisak

Sign in / Sign up

Export Citation Format

Share Document