scholarly journals Follow-Up Echocardiography of the Right Ventricle in Pulmonary Arterial Hypertension

2019 ◽  
Vol 12 (11) ◽  
pp. 2112-2114
Author(s):  
Allan Klein ◽  
Zoran B. Popović ◽  
Patrick Collier
2018 ◽  
Vol 96 (3) ◽  
pp. 295-303 ◽  
Author(s):  
Rafaela Siqueira ◽  
Rafael Colombo ◽  
Adriana Conzatti ◽  
Alexandre Luz de Castro ◽  
Cristina Campos Carraro ◽  
...  

The aim of this study was to evaluate the impact of ovariectomy on oxidative stress in the right ventricle (RV) of female rats with pulmonary arterial hypertension (PAH) induced by monocrotaline (MCT). Rats were divided into 4 groups (n = 6 per group): sham (S), sham + MCT (SM), ovariectomized (O), and ovariectomized + MCT (OM). MCT (60 mg·kg−1 i.p.) was injected 1 week after ovariectomy or sham surgery. Three weeks later, echocardiographic analysis and RV catheterisation were performed. RV morphometric, biochemical, and protein expression analysis through Western blotting were done. MCT promoted a slight increase in pulmonary artery pressure, without differences between the SM and OM groups, but did not induce RV hypertrophy. RV hydrogen peroxide increased in the MCT groups, but SOD, CAT, and GPx activities were also enhanced. Non-classical antioxidant defenses diminished in ovariectomized groups, probably due to a decrease in the nuclear factor Nrf2. Hemoxygenase-1 and thioredoxin-1 protein expression was increased in the OM group compared with SM, being accompanied by an elevation in the estrogen receptor β (ER-β). Hemoxygenase-1 and thioredoxin-1 may be involved in the modulation of oxidative stress in the OM group, and this could be responsible for attenuation of PAH and RV remodeling.


2015 ◽  
Vol 46 (3) ◽  
pp. 832-842 ◽  
Author(s):  
Emmy Manders ◽  
Silvia Rain ◽  
Harm-Jan Bogaard ◽  
M. Louis Handoko ◽  
Ger J.M. Stienen ◽  
...  

Pulmonary arterial hypertension (PAH) is a fatal lung disease characterised by progressive remodelling of the small pulmonary vessels. The daily-life activities of patients with PAH are severely limited by exertional fatigue and dyspnoea. Typically, these symptoms have been explained by right heart failure. However, an increasing number of studies reveal that the impact of the PAH reaches further than the pulmonary circulation. Striated muscles other than the right ventricle are affected in PAH, such as the left ventricle, the diaphragm and peripheral skeletal muscles. Alterations in these striated muscles are associated with exercise intolerance and reduced quality of life. In this Back to Basics article on striated muscle function in PAH, we provide insight into the pathophysiological mechanisms causing muscle dysfunction in PAH and discuss potential new therapeutic strategies to restore muscle dysfunction.


2016 ◽  
Vol 311 (3) ◽  
pp. H689-H698 ◽  
Author(s):  
Sachindra Raj Joshi ◽  
Vidhi Dhagia ◽  
Salina Gairhe ◽  
John G. Edwards ◽  
Ivan F. McMurtry ◽  
...  

Heart failure, a major cause of morbidity and mortality in patients with pulmonary arterial hypertension (PAH), is an outcome of complex biochemical processes. In this study, we determined changes in microRNAs (miRs) in the right and left ventricles of normal and PAH rats. Using an unbiased quantitative miR microarray analysis, we found 1) miR-21-5p, miR-31-5 and 3p, miR-140-5 and 3p, miR-208b-3p, miR-221-3p, miR-222-3p, miR-702-3p, and miR-1298 were upregulated (>2-fold; P < 0.05) in the right ventricle (RV) of PAH compared with normal rats; 2) miR-31-5 and 3p, and miR-208b-3p were upregulated (>2-fold; P < 0.05) in the left ventricle plus septum (LV+S) of PAH compared with normal rats; 3) miR-187-5p, miR-208a-3p, and miR-877 were downregulated (>2-fold; P < 0.05) in the RV of PAH compared with normal rats; and 4) no miRs were up- or downregulated with >2-fold in LV+S compared with RV of PAH and normal. Upregulation of miR-140 and miR-31 in the hypertrophic RV was further confirmed by quantitative PCR. Interestingly, compared with control rats, expression of mitofusin-1 (MFN1), a mitochondrial fusion protein that regulates apoptosis, and which is a direct target of miR-140, was reduced in the RV relative to LV+S of PAH rats. We found a correlation between increased miR-140 and decreased MFN1 expression in the hypertrophic RV. Our results also demonstrated that upregulation of miR-140 and downregulation of MFN1 correlated with increased RV systolic pressure and hypertrophy. These results suggest that miR-140 and MFN1 play a role in the pathogenesis of PAH-associated RV dysfunction. Listen to this article's corresponding podcast at http://ajpheart.podbean.com/e/mir140-and-right-heart-hypertrophy/ .


CHEST Journal ◽  
2014 ◽  
Vol 145 (6) ◽  
pp. 1230-1236 ◽  
Author(s):  
Wouter Jacobs ◽  
Mariëlle C. van de Veerdonk ◽  
Pia Trip ◽  
Frances de Man ◽  
Martijn W. Heymans ◽  
...  

2018 ◽  
Vol 32 (S1) ◽  
Author(s):  
Matthew W. Gorr ◽  
Wenjing Liang ◽  
Abinaya Muthusamy ◽  
Krishna Sriram ◽  
Paul A. Insel

Sign in / Sign up

Export Citation Format

Share Document