scholarly journals Blood–brain barrier delivery of protein and non-viral gene therapeutics with molecular Trojan horses

2007 ◽  
Vol 122 (3) ◽  
pp. 345-348 ◽  
Author(s):  
William M. Pardridge
2021 ◽  
Vol 28 ◽  
Author(s):  
Antonela Sofía Asad ◽  
Alejandro Javier Nicola Candia ◽  
Nazareno González ◽  
Camila Florencia Zuccato ◽  
Adriana Seilicovich ◽  
...  

Background: Glioblastoma constitutes the most frequent and aggressive primary malignant brain tumor in adults. Despite the advances in its treatment, its prognosis remains very poor. Gene therapy has been proposed as a complementary treatment, since it may overcome the problem of the blood-brain barrier for systemic therapies, allowing to target tumor cells and their tumor microenvironment locally, without affecting the normal brain parenchyma. In comparison with viral vectors, non-viral vectors became an attractive tool due to their reduced potential of biosafety risks, lower cost, higher availability and easy storage. Objective: In this article, we aimed to outline the current preclinical and clinical developments of non-viral delivery systems for therapeutic transgene delivery in malignant gliomas. Conclusion: Non-viral vectors are efficient tools for gene delivery since they exhibit reduced non-specific cytotoxicity and can go through several modifications in order to achieve high tumor tropism and the ability to cross the blood-brain barrier to access the tumor mass. However, further evaluations in preclinical models and clinical trials are required in order to translate it into the neuro-oncology clinic.


2011 ◽  
Vol 2011 ◽  
pp. 1-12 ◽  
Author(s):  
Ruben J. Boado ◽  
William M. Pardridge

The application of blood-borne gene therapy protocols to the brain is limited by the presence of the blood-brain barrier (BBB). Viruses have been extensively used as gene delivery systems. However, their efficacy in brain is limited by the lack of transport across the BBB following intravenous (IV) administration. Recent progress in the “Trojan Horse Liposome” (THL) technology applied to transvascular non-viral gene therapy of the brain presents a promising solution to the trans-vascular brain gene delivery problem. THLs are comprised of immunoliposomes carrying nonviral gene expression plasmids. The tissue target specificity of the THL is provided by peptidomimetic monoclonal antibody (MAb) component of the THL, which binds to specific endogenous receptors located on both the BBB and on brain cellular membranes, for example, insulin receptor and transferrin receptor. These MAbs mediate (a) receptor-mediated transcytosis of the THL complex through the BBB, (b) endocytosis into brain cells and (c) transport to the brain cell nuclear compartment. The expression of the transgene in brain may be restricted using tissue/cell specific gene promoters. This manuscript presents an overview on the THL transport technology applied to brain disorders, including lysosomal storage disorders and Parkinson's disease.


Hypertension ◽  
2020 ◽  
Vol 76 (3) ◽  
pp. 795-807 ◽  
Author(s):  
Monica M. Santisteban ◽  
Sung Ji Ahn ◽  
Diane Lane ◽  
Giuseppe Faraco ◽  
Lidia Garcia-Bonilla ◽  
...  

Hypertension is a leading cause of stroke and dementia, effects attributed to disrupting delivery of blood flow to the brain. Hypertension also alters the blood-brain barrier (BBB), a critical component of brain health. Although endothelial cells are ultimately responsible for the BBB, the development and maintenance of the barrier properties depend on the interaction with other vascular-associated cells. However, it remains unclear if BBB disruption in hypertension requires cooperative interaction with other cells. Perivascular macrophages (PVM), innate immune cells closely associated with cerebral microvessels, have emerged as major contributors to neurovascular dysfunction. Using 2-photon microscopy in vivo and electron microscopy in a mouse model of Ang II (angiotensin II) hypertension, we found that the vascular segments most susceptible to increased BBB permeability are arterioles and venules >10 µm and not capillaries. Brain macrophage depletion with clodronate attenuates, but does not abolish, the increased BBB permeability in these arterioles where PVM are located. Deletion of AT1R (Ang II type-1 receptors) in PVM using bone marrow chimeras partially attenuated the BBB dysfunction through the free radical-producing enzyme Nox2. In contrast, downregulation of AT1R in cerebral endothelial cells using a viral gene transfer-based approach prevented the BBB disruption completely. The results indicate that while endothelial AT1R, mainly in arterioles and venules, initiate the BBB disruption in hypertension, PVM are required for the full expression of the dysfunction. The findings unveil a previously unappreciated contribution of resident brain macrophages to increased BBB permeability of hypertension and identify PVM as a putative therapeutic target in diseases associated with BBB dysfunction.


2021 ◽  
Author(s):  
Bhavya Ramesh Shah ◽  
Rachel M Bailey ◽  
Ibrahim Youssef ◽  
Sydni K Holmes ◽  
Austin Marckx ◽  
...  

Transcranial Magnetic Resonance Guided Focused Ultrasound (MRgFUS) can be used in conjunction with intravenous microbubbles to open the blood brain barrier (BBB) in discrete brain regions. This method is limited by the microbubble dose, the amount of energy that can be safely delivered across an intact skull, and the inability to target areas of the brain outside of central brain regions. We find that N2O administration substantially decreases the required dose of microbubbles and/or focused ultrasound pressure while still reliably opening the blood brain barrier. Additionally, we observe that the use of nitrous oxide improves the delivery of adeno-associated virus (AAV9) vector when compared to medical air. Our findings may help overcome focused ultrasound limitations and improve targeted delivery of therapeutics in humans.


Sign in / Sign up

Export Citation Format

Share Document