A hybrid numerical method for interfacial fluid flow with soluble surfactant

2010 ◽  
Vol 229 (10) ◽  
pp. 3864-3883 ◽  
Author(s):  
M.R. Booty ◽  
M. Siegel
2021 ◽  
Vol 13 (5) ◽  
pp. 168781402110178
Author(s):  
Jianhui Tian ◽  
Guoquan Jing ◽  
Xingben Han ◽  
Guangchu Hu ◽  
Shilin Huo

The thermal problem of functionally graded materials (FGM) under linear heat source is studied by a hybrid numerical method. The accuracy of the analytical method and the efficiency of the finite element method are taken into account. The volume fraction of FGM in the thickness direction can be changed by changing the gradient parameters. Based on the weighted residual method, the heat conduction equation under the third boundary condition is established. The temperature distribution of FGM under the action of linear heat source is obtained by Fourier transform. The results show that the closer to the heat source it is, the greater the influence of the heat source is and the influence of the heat source is local. The temperature change trend of the observation points is consistent with the heat source, showing a linear change. The results also show that the higher the value of gradient parameter is, the higher the temperature of location point is. The temperature distribution of observation points is positively correlated with gradient parameter. When the gradient parameter value exceeds a certain value, it has a little effect on the temperature change in the model and the heat conduction in the model tends to be pure metal heat conduction, the optimal gradient parameters combined the thermal insulation property of ceramics and the high strength toughness of metals are obtained.


1998 ◽  
Vol 142 (2) ◽  
pp. 506-520 ◽  
Author(s):  
Cheryl V. Hile ◽  
Gregory A. Kriegsmann

2018 ◽  
Vol 5 (1) ◽  
pp. 98-112
Author(s):  
Frank H. Lynch ◽  
Gretchen B. North ◽  
Breeanna S. Page ◽  
Cullen J. Faulwell

Author(s):  
Khadijah M. Abualnaja

This paper introduces a theoretical and numerical study for the problem of Casson fluid flow and heat transfer over an exponentially variable stretching sheet. Our contribution in this work can be observed in the presence of thermal radiation and the assumption of dependence of the fluid thermal conductivity on the heat. This physical problem is governed by a system of ordinary differential equations (ODEs), which is solved numerically by using the differential transformation method (DTM). This numerical method enables us to plot figures of the velocity and temperature distribution through the boundary layer region for different physical parameters. Apart from numerical solutions with the DTM, solutions to our proposed problem are also connected with studying the skin-friction coefficient. Estimates for the local Nusselt number are studied as well. The comparison of our numerical method with previously published results on similar special cases shows excellent agreement.


2016 ◽  
Vol 33 ◽  
pp. 1271-1281 ◽  
Author(s):  
Na Huang ◽  
Yujing Jiang ◽  
Bo Li ◽  
Richeng Liu

Sign in / Sign up

Export Citation Format

Share Document