Reduced-order modeling of neutron transport separated in energy by Proper Generalized Decomposition with applications to nuclear reactor physics

2021 ◽  
pp. 110744
Author(s):  
Kurt A. Dominesey ◽  
Wei Ji
2019 ◽  
Vol 65 (2) ◽  
pp. 451-473 ◽  
Author(s):  
Hasini Garikapati ◽  
Sergio Zlotnik ◽  
Pedro Díez ◽  
Clemens V. Verhoosel ◽  
E. Harald van Brummelen

Abstract Understanding the failure of brittle heterogeneous materials is essential in many applications. Heterogeneities in material properties are frequently modeled through random fields, which typically induces the need to solve finite element problems for a large number of realizations. In this context, we make use of reduced order modeling to solve these problems at an affordable computational cost. This paper proposes a reduced order modeling framework to predict crack propagation in brittle materials with random heterogeneities. The framework is based on a combination of the Proper Generalized Decomposition (PGD) method with Griffith’s global energy criterion. The PGD framework provides an explicit parametric solution for the physical response of the system. We illustrate that a non-intrusive sampling-based technique can be applied as a post-processing operation on the explicit solution provided by PGD. We first validate the framework using a global energy approach on a deterministic two-dimensional linear elastic fracture mechanics benchmark. Subsequently, we apply the reduced order modeling approach to a stochastic fracture propagation problem.


2020 ◽  
Vol 149 ◽  
pp. 107799
Author(s):  
Yue Sun ◽  
Junhe Yang ◽  
Yahui Wang ◽  
Zhuo Li ◽  
Yu Ma

2014 ◽  
Author(s):  
Donald L. Brown ◽  
Jun Li ◽  
Victor M. Calo ◽  
Mehdi Ghommem ◽  
Yalchin Efendiev

Sign in / Sign up

Export Citation Format

Share Document