Numerical investigation of the effect of a crucible cover on crystal growth in the industrial directional solidification process for silicon ingots

2014 ◽  
Vol 401 ◽  
pp. 291-295 ◽  
Author(s):  
Zaoyang Li ◽  
Yunfeng Zhang ◽  
Zhiyan Hu ◽  
Genshu Zhou ◽  
Lijun Liu
2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Zaoyang Li ◽  
Lijun Liu ◽  
Yunfeng Zhang ◽  
Genshu Zhou

We carried out transient global simulations of heating, melting, growing, annealing, and cooling stages for an industrial directional solidification (DS) process for silicon ingots. The crucible thermal conductivity is varied in a reasonable range to investigate its influence on the global heat transfer and silicon crystal growth. It is found that the crucible plays an important role in heat transfer, and therefore its thermal conductivity can influence the crystal growth significantly in the entire DS process. Increasing the crucible thermal conductivity can shorten the time for melting of silicon feedstock and growing of silicon crystal significantly, and therefore large thermal conductivity is helpful in saving both production time and power energy. However, the high temperature gradient in the silicon ingots and the locally concave melt-crystal interface shape for large crucible thermal conductivity indicate that high thermal stress and dislocation propagation are likely to occur during both growing and annealing stages. Based on the numerical simulations, some discussions on designing and choosing the crucible thermal conductivity are presented.


2013 ◽  
Vol 842 ◽  
pp. 57-60 ◽  
Author(s):  
Yan Bo Dong ◽  
Ming Chen ◽  
Xi Wang

The competitive growth of multiple dendrites and crystal growth of directional solidification in a Mg-Al binary alloy were simulated using phase-field model, and the effect of undercooling value on the microstructural dendritic growth pattern in directional solidification process was studied in the paper. The simulation results showed the impingement of the adjacent grains, which made the dendrite growth inhibited in the competitive growth of multiple dendrites, and in directional solidification process, quantitative comparison of different undercooling values that predicted the columnar dendrite evolution were carried out. With the increasing of the undercooling value, the dendrite tip radius and second dendrite arms became smaller, and the crystal structure is more uniform and dense.


Sign in / Sign up

Export Citation Format

Share Document