Effect of InAs buffer layer thickness on physical properties of InAsBi heterostructures grown by MOCVD

2020 ◽  
Vol 549 ◽  
pp. 125881
Author(s):  
I. Massoudi ◽  
A. Rebey
2011 ◽  
Vol 11 (2) ◽  
pp. 1409-1412 ◽  
Author(s):  
Ah Ra Kim ◽  
Ju-Young Lee ◽  
Bo Ra Jang ◽  
Hong Seung Kim ◽  
Young Ji Cho ◽  
...  

2010 ◽  
Vol 19 (3) ◽  
pp. 036801 ◽  
Author(s):  
Wu Yu-Xin ◽  
Zhu Jian-Jun ◽  
Chen Gui-Feng ◽  
Zhang Shu-Ming ◽  
Jiang De-Sheng ◽  
...  

1994 ◽  
Vol 339 ◽  
Author(s):  
T. J. Kistenmacher ◽  
S. A. Ecelberger ◽  
W. A. Bryden

ABSTRACTIntroduction of a buffer layer to facilitate heteroepitaxy in thin films of the Group IIIA nitrides has had a tremendous impact on growth morphology and electrical transport. While AIN- and self-seeded growth of GaN has captured the majority of attention, the use of AIN-buffered substrates for InN thin films has also had considerable success. Herein, the properties of InN thin films grown by reactive magnetron sputtering on AIN-buffered (00.1) sapphire and (111) silicon are presented and, in particular, the evolution of the structural and electrical transport properties as a function of buffer layer sputter time (corresponding to thicknesses from ∼50Å to ∼0.64 μm) described. Pertinent results include: (a) for the InN overlayer, structural coherence and homogeneous strain normal to the (00.1) growth plane are highly dependent on the thickness of the AIN-buffer layer; (b) the homogeneous strain in the AIN-buffer layer is virtually nonexistent from a thickness of 200Å (where a significant X-ray intensity for (00.2)AIN is observed); and (c) the n-type electrical mobility for films on AIN-nucleated (00.1) sapphire is independent of AIN-buffer layer thickness, owing to divergent variations in carrier concentration and film resistivity. These effects are in the main interpreted as arising from a competition between the lattice mismatch of the InN overlayer with the substrate and with the AIN-buffer layer.


2004 ◽  
Vol 262 (1-4) ◽  
pp. 456-460 ◽  
Author(s):  
Yuantao Zhang ◽  
Guotong Du ◽  
Boyang Liu ◽  
HuiChao Zhu ◽  
Tianpeng Yang ◽  
...  

2010 ◽  
Vol 518 (19) ◽  
pp. 5396-5399 ◽  
Author(s):  
Shiyong Gao ◽  
Hongdong Li ◽  
Junwei Liu ◽  
Yingai Li ◽  
Xianyi Lü ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document