homogeneous strain
Recently Published Documents


TOTAL DOCUMENTS

89
(FIVE YEARS 10)

H-INDEX

18
(FIVE YEARS 1)

Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7059
Author(s):  
Mikhail G. Lavrentev ◽  
Vladimir T. Bublik ◽  
Filipp O. Milovich ◽  
Viktoriya P. Panchenko ◽  
Yuri N. Parkhomenko ◽  
...  

In this study, Ingots of (Bi, Sb)2Te3 thermoelectric material with p-type conductivity have been obtained by hot extrusion. The main regularities of hot extrusion of 30 mm rods have been analyzed with the aid of a mathematical simulation on the basis of the joint use of elastic-plastic body approximations. The phase composition, texture and microstructure of the (Bi, Sb)2Te3 solid solutions have been studied using X-ray diffraction and scanning electron microscopy. The thermoelectric properties have been studied using the Harman method. We show that extrusion through a 30 mm diameter die produces a homogeneous strain. The extruded specimens exhibit a fine-grained structure and a clear axial texture in which the cleavage planes are parallel to the extrusion axis. The quantity of defects in the grains of the (Bi, Sb)2Te3 thermoelectric material decreases with an increase in the extrusion rate. An increase in the extrusion temperature leads to a decrease in the Seebeck coefficient and an increase in the electrical conductivity. The specimens extruded at 450 °C and a 0.5 mm/min extrusion rate have the highest thermoelectric figure of merit (Z = 3.2 × 10−3 K−1).


Author(s):  
Takahiro Masuda ◽  
Kazushige Fujimitsu ◽  
Kosei Sumikawa ◽  
Takahiro Kajita ◽  
Yongpeng Tang ◽  
...  

2020 ◽  
Vol 195 ◽  
pp. 87-97 ◽  
Author(s):  
G. Calabrese ◽  
D. van Treeck ◽  
V.M. Kaganer ◽  
O. Konovalov ◽  
P. Corfdir ◽  
...  

Author(s):  
Adrian P. Sutton

A discussion of the continuum approximation is followed by the definition of deformation as a transformation involving changes in separation between points within a continuum. This leads to the mathematical definition of the deformation tensor. The introduction of the displacement vector and its gradient leads to the definition of the strain tensor. The linear elastic strain tensor involves an approximation in which gradients of the displacement vector are assumed to be small. The deformation tensor can be written as the sum of syymetric and antisymmetric parts, the former being the strain tensor. Normal and shear strains are distinguished. Problems set 1 introduces the strain ellipsoid, the invariance of the trace of the strain tensor, proof that the strain tensor satisfies the transformation law of second rank tensors and a general expression for the change in separation of points within a continuum subjected to a homogeneous strain.


2020 ◽  
Vol 20 (04) ◽  
pp. 1950084 ◽  
Author(s):  
M. MARTIN ◽  
T. LEMAIRE ◽  
G. HAIAT ◽  
P. PIVONKA ◽  
V. SANSALONE

In this paper, we present and discuss a model of bone remodeling set up in the framework of the theory of generalized continuum mechanics which was first introduced by DiCarlo et al. [Sur le remodelage des tissus osseux anisotropes, Comptes Rendus Mécanique 334(11):651–661, 2006]. Bone is described as an orthotropic body experiencing remodeling as a rotation of its microstructure. Thus, the complete kinematic description of a material point is provided by its position in space and a rotation tensor describing the orientation of its microstructure. Material motion is driven by energetic considerations, namely by the application of the Clausius–Duhem inequality to the microstructured material. Within this framework of orthotropic remodeling, some key features of the remodeling equilibrium configurations are deduced in the case of homogeneous strain or stress loading conditions. First, it is shown that remodeling equilibrium configurations correspond to energy extrema. Second, stability of the remodeling equilibrium configurations is assessed in terms of the local convexity of the strain and complementary energy functionals hence recovering some classical energy theorems. Eventually, it is shown that the remodeling equilibrium configurations are not only highly dependent on the loading conditions, but also on the material properties.


Minerals ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 787 ◽  
Author(s):  
Karine Gouriet ◽  
Philippe Carrez ◽  
Patrick Cordier

The ultimate mechanical properties, as characterized here by the ideal strengths of Mg2SiO4 forsterite, have been calculated using first-principles calculations and generalized gradient approximation under tensile and shear loading. The ideal tensile strengths (ITS) and ideal shear strengths (ISS) are computed by applying homogeneous strain increments along high-symmetry directions ([100], [010], and [001]) and low index shear plane ((100), (010), and (001)) of the orthorhombic lattice. We show that the ultimate mechanical properties of forsterite are highly anisotropic, with ITS ranging from 12.1 GPa along [010] to 29.3 GPa along [100], and ISS ranging from 5.6 GPa for simple shear deformation along (100) to 11.5 GPa for shear along (010).


Biology Open ◽  
2019 ◽  
Vol 8 (5) ◽  
pp. bio039164 ◽  
Author(s):  
Yasuyuki Morita ◽  
Toshihiro Sato ◽  
Kouji Higashiura ◽  
Yusho Hirano ◽  
Fuga Matsubara ◽  
...  

2019 ◽  
Vol 281 ◽  
pp. 01018 ◽  
Author(s):  
Ahmad El Hajjar ◽  
Joanna Eid ◽  
Tariq Ouahbi ◽  
Said Taibi

Nowadays, structures are mainly constructed using natural aggregates as sand and gravels. In the future, we would increasingly have to consider replacing them by more abundant and ecological natural materials such as raw earth. However, despite its many qualities (low gray energy, thermal and hygrometric isolation), this eco-material has some defects: cracking by desiccation. The later prevent its widespread diffusion. This study aims to understand the mechanisms of appearance and propagation of cracks in order to try to either prevent or repair it. To carry out this study, digital image correlation technique is used. It consists in performing free desiccation tests to follow the initiation and propagation of cracks, from the beginning of homogeneous strain until the appearance of discontinuity, in order to determine the strains tensor in the massif. In order to understand the origin of cracking, desiccation is studied for different boundary conditions and according to different intrinsic characteristics of the material.


Sign in / Sign up

Export Citation Format

Share Document