Effective width of a concrete slab in steel–concrete composite beams prestressed with external tendons

2006 ◽  
Vol 62 (5) ◽  
pp. 493-500 ◽  
Author(s):  
Shiming Chen ◽  
Zhibin Zhang
2018 ◽  
Vol 11 (4) ◽  
pp. 757-778
Author(s):  
A. R. SILVA ◽  
L. E. S. DIAS

Abstract Most of the engineering problems involving structural elements of steel-concrete composite beam type are approximations of the structural problem involving concrete plates connected by connectors to steel beams. Technical standards allow the replacement of the concrete plate element by a beam element by adopting a reduction in the width of the plate element known as effective width. The effective width is obtained, in most technical norms, taking into account only the parameters of beam span length and distance between adjacent beams. Numerical and experimental works found in the literature show that this effective width depends on several other parameters, such as the width and thickness of the concrete slab, and the type of loading. The objective of this work is to verify the influence of the partial interaction in the evaluation of the effective width of composite beams formed by a concrete slab connected to a steel beam with deformable connection, being used in numerical simulation three types of finite elements: a plate element for nonlinear analysis of the concrete slab; a bar element for non-linear analysis of beams with cross-section defined by a polygon; and an interface element which connects the plate and beam elements, simulating the deformation effect of the shear connectors. In the studied examples, it was found that the reduction of the shear connection stiffness at the interface between the concrete slab and the steel beam leads to a decrease in the shear lag effect and, consequently, makes the effective width of the concrete slab closer to the its real width. In another example, curves are constructed to define the effective width of a composite beam with medium stiffness. Considering maximum stresses and maximum displacements, these curves are obtained by forcing the equivalence of the approximate model with the model closest to the real problem.


1986 ◽  
Vol 13 (5) ◽  
pp. 575-582 ◽  
Author(s):  
S. Elkelish ◽  
Hugh Robinson

The effective width of the concrete slab of a composite beam is used in the determination of its moment resistance and service load moment for the purposes of structural design of the composite beam. It is usually assumed that the same effective width of the concrete slab may be used for both ultimate strength and elastic stage calculations.This paper presents the results of an analytical investigation of the variation of the effective width of composite beams and ribbed slabs formed by ribbed metal deck in both the elastic and inelastic stages and at ultimate load. A layered finite element method is used to model the composite beam. The influence of four variables on the effective width of the composite beams was studied, namely, type of loading, beam span to actual concrete slab width, ultimate compressive strength of the concrete, and steel beam size.It was found that the effect of the compressive strength of the concrete and the size of the steel beam have negligible influence on the effective width of the concrete slab. The effective width of the slab at ultimate load is of the order of 4% larger than that in the elastic range.The effective width used for the design of composite beams under a uniformly distributed load, which is the practical loading in most cases, is significantly different from that which should be used for any other type of loading.


1976 ◽  
Vol 3 (4) ◽  
pp. 514-522 ◽  
Author(s):  
M. N. El-Ghazzi ◽  
H. Robinson ◽  
I. A. S. Elkholy

The longitudinal shear failure of the slab of composite beams is constrained to occur at a predetermined shear surface. A method for calculating the longitudinal shear capacity of the slab of simply-supported steel–concrete composite beams is presented. The method is based on analyzing the stresses at failure of the concrete elements located at the slab shear surface.A design chart based on estimating the transverse normal stress required within the concrete slab to achieve the full ultimate flexural capacity of the composite beam is proposed. Alternatively, using elastic–plastic stress distribution across the concrete slab, the longitudinal compressive force due to bending and hence the applied moment can be predicted for any longitudinal shear capacity of the slab. The proposed design and analysis when compared to previous tests and analysis showed good agreement.The slab width and the shear span of the composite beam are found to be two important parameters which cannot be neglected when estimating the longitudinal shear capacity of the slab. These two parameters have been neglected in the empirical solutions previously adopted.


2014 ◽  
Vol 71 ◽  
pp. 187-200 ◽  
Author(s):  
Cheng-Tzu Thomas Hsu ◽  
Sun Punurai ◽  
Wonsiri Punurai ◽  
Yazdan Majdi

2016 ◽  
Vol 121 ◽  
pp. 163-172 ◽  
Author(s):  
Huang Yuan ◽  
Huang Deng ◽  
Yang Yang ◽  
Yi Weijian ◽  
Zhu Zhenggeng

1986 ◽  
Vol 13 (1) ◽  
pp. 66-75 ◽  
Author(s):  
E. H. Fahmy ◽  
Hugh Robinson

This paper concerns the analysis and testing of 10 cantilever composite beams incorporating ribbed metal deck, representing the positive moment beam–column connections in an unbraced steel frame with composite floor beams. The positive moment beam–column connections arise from lateral forces on the unbraced frame. The effective widths of the slabs for strength and stiffness calculations have been determined from analysis. Agreement between the calculated strain distributions across the concrete slab width and the corresponding measured strain distributions was attained. Use of the calculated effective widths of the slab for strength together with a concrete strength of [Formula: see text] gave good agreement with the measured positive ultimate moment capacities of the cantilever composite beams subjected to upward end test loads.


2004 ◽  
Vol 60 (2) ◽  
pp. 199-220 ◽  
Author(s):  
C. Amadio ◽  
C. Fedrigo ◽  
M. Fragiacomo ◽  
L. Macorini

Sign in / Sign up

Export Citation Format

Share Document