Behaviour of normal and high strength concrete-filled compact steel tube circular stub columns

2006 ◽  
Vol 62 (7) ◽  
pp. 706-715 ◽  
Author(s):  
Ehab Ellobody ◽  
Ben Young ◽  
Dennis Lam
2013 ◽  
Vol 663 ◽  
pp. 125-129 ◽  
Author(s):  
Chang Sik Choi ◽  
Hyung Suk Jung ◽  
Hyun Ki Choi

The paper presents an experimental study on the behavior of axial loaded concrete-filled steel square-tube stub columns with high strength fiber reinforced concrete until failure. Four specimens were tested to investigate the effect of high strength concrete on the load carrying capacity of the concrete-filled steel square-tube stub columns. The effect of the presence of steel fiber in high strength concrete which filled in the steel tube was also investigated. The main parameters in the tests were: (1) the strength of concrete (30 Mpa and 100 Mpa), and (2) the use of reinforcing steel fiber in concrete (plain high strength concrete and steel fiber high strength concrete). The main purpose of these tests were three-step: (1) to describe a series of tests on composite stub columns, (2) to analyze the influence of several parameters, and (3) to compare the accuracy of the predictions by using the specifications in the code (ACI and EC4 etc.) for the design of high-strength composite columns. Experimental results indicate that the high strength of concrete and use of steel-fiber in concrete had significant influence on both the axial compressive load capacity and the ductile of the steel square-tube stub columns.


2014 ◽  
Vol 578-579 ◽  
pp. 340-345
Author(s):  
Guo Chang Li ◽  
Bo Wen Zhu ◽  
Yu Liu

In this paper, using ABAQUS, 16 high-strength concrete filled high-strength square steel tube middle-long columns’ axial compression process were simulated. The load-deflection relationships were obtained and the new combination in improving the bearing capacity and plastic deformation has a great advantage. Realization of length variation slenderness ratio by changing the length of column, this paper also study the influence of slenderness ratio, the main parameters of the high-strength concrete filled high-strength square steel tube middle-long column. It is found that both bearing capacity and the plastic capacity are associated with slenderness ratio.


2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Hyung-Suk Jung ◽  
Baek-Il Bae ◽  
Hyun-Ki Choi ◽  
Joo-Hong Chung ◽  
Chang-Sik Choi ◽  
...  

This study was conducted to evaluate the applicability of concrete-filled steel tube (CFT) columns made from high-performance construction materials. KBC2016, South Korea’s current building code, limits the maximum compressive strength of concrete at 70 MPa and the maximum yield strength of steel at 650 MPa. Similar restrictions to material properties are imposed on major composite structural design parameters in other countries worldwide. With the recent acceleration of the pace of development in the field of material technology, the compressive strength of commercial concrete has been greatly improved and the problem of low tensile strength, known to be the major limitation of concrete, is being successfully addressed by adding fiber reinforcement to concrete. Therefore, the focus of this study was to experimentally determine the strength and ductility enhancement effects, which depend on material composition. To this end, we performed concentric axial loading tests on CFT stub columns made from steel with a yield strength of 800 MPa and steel fiber-reinforced high-strength concrete. By measuring the strain at the yield point of CFT steel during the test, we could determine whether steel yields earlier than ultimate failure load of the member, which is a key design concept of composite structures. The analysis results revealed that the yield point of steel preceded that of concrete on the stress-strain curve by the concurrent action of the strain increase at the maximum strength, attributable to the high compressive strength and steel fiber reinforcement, and the strain increase induced by the confining stress of the steel tube. Additionally, we performed parametric study using ABAQUS to establish the broad applications of CFT using high-performance materials, with the width-to-thickness ratio as the main parameter. Parametric study was undertaken as experimental investigation was not feasible, and we reviewed the criteria for limiting the width-to-thickness ratio as specified in the current building code.


Sign in / Sign up

Export Citation Format

Share Document