Axial Compressive Behavior of FRP-Concrete-Steel Double Skin Tubular Columns with a Rib-Stiffened Q690 Steel Tube and Ultra-High Strength Concrete

2021 ◽  
pp. 113912
Author(s):  
Jun-Jie Zeng ◽  
Yu-Zhao Zheng ◽  
Yue-Ling Long
2015 ◽  
Vol 21 (5) ◽  
pp. 666-676 ◽  
Author(s):  
Chun Xiao Dong ◽  
Johnny Ching Ming Ho

Recent advances in the production of super-fine cement and filler technology has made the production of high-strength concrete (HSC) of 120 MPa practicable in the industry. Nonetheless, the application of such HSC in real construction is still limited. One of the reasons that inhibits the use of HSC is the brittleness, which causes HSC structures to fail explosively if the concrete confinement is not adequate. The traditional method of installing transverse steel as confinement is not feasible in HSC structures, as the steel will be too congested to ensure proper concrete placing. To overcome the problem, double-skinned high-strength concrete-filled-steel-tubular (HSCFST) columns has been advocated, which could provide large, continuous and uniform confinement to HSC. However, a major shortcoming of the double-skinned HSCFST columns is the imperfect interface bonding that occurs at the elastic stage that reduces the elastic strength and stiffness of columns. To improve the situation, the authors have verified previously that using external steel rings on the outer steel tube can successfully restrict the dilation of HSCFST columns and thus restore an intact interface bonding condition. As a continued study, the authors will in this paper develop a theoretical model for predicting the uni-axial load-carrying capacity of doubled-skinned HSCFST columns.


2014 ◽  
Vol 919-921 ◽  
pp. 83-87
Author(s):  
Butje Alfonsius Louk Fanggi ◽  
Togay Ozbakkaloglu

This paper reports on part of an ongoing experimental program at the University of Adelaide on FRP-concrete-steel double-skin tubular columns (DSTCs). The main emphasis of the study reported in this paper was to investigate the influence of loading pattern on the axial compressive behavior of DSTCs. To this end, 12 hollow and concrete-filled DSTCs were manufactured and tested under monotonic or cyclic axial compression. All of the specimens were manufactured using high-strength concrete (HSC). The results of the experimental study indicate that that concrete in cyclically loaded hollow DSTCs exhibits slightly larger strength and strain enhancement ratios than concrete in companion monotonically loaded DSTCs. The results also indicate that concrete in filled DSTCs exhibit slightly larger strength enhancement ratios than and similar strain enhancement ratios to concrete in monotonically loaded DSTCs.


2012 ◽  
Vol 472-475 ◽  
pp. 1119-1125 ◽  
Author(s):  
Ke Feng Tan ◽  
Lai Bao Liu

This study investigated the mechanical properties of High Strength Concrete filled steel tubular short columns (HSCFSTSC) with length to diameter ratio (L/D) of 3.5.The strength of concrete used to fill the steel tubular columns ranged from 54MPa to 116MPa. The test results showed that using a steel tube as confinement can significantly improve the ductility and compressive strength of core concrete. The magnitude of compressive strength increase of core concrete was directly proportional to the Confinement Index, , and the extent of improvement of the ductility increases as the  increases. For thoroughly improving the ductility of core concrete, the Confinement Index  should be equal or larger than 0.48. The formula used to calculate the load bearing capacity of HSCFSTSC was given out.


2015 ◽  
Vol 1089 ◽  
pp. 235-238
Author(s):  
Ping Guan ◽  
Lan Xiang Chen

To study on the mechanical behaviors of the new slender steel-concrete composite columns that are named after steel tubular columns filled with steel-reinforced high-strength concrete(STSRHC), the mechanical models of slender STSRHC are established for the analysis with the finite element software ABAQUS. There are seven influencing factors on the mechanical behaviors of slender STSRHC, they are: slender ratio, eccentricity, the thickness of steel tube, the yield stress of steel tube, the yield stress of inserted steel, the cube strength of high-strength concrete, the shape of inserted steel cross section. The results show the results calculated by software have good agreements with the tested ones; slender ratio, eccentricity and the thickness are the most effective factors on the mechanical properties of slender STSRHC.


2013 ◽  
Vol 838-841 ◽  
pp. 535-539 ◽  
Author(s):  
Butje Alfonsius Louk Fanggi ◽  
Togay Ozbakkaloglu

This paper reports on a part of an ongoing experimental program at the University of Adelaide on the behavior of fiber reinforced polymer (FRP)-concrete-steel double-skin tubular columns (DSTCs). Influence of concrete-filling inner steel tube on the compressive behavior of FRP-concrete-steel DSTCs was investigated experimentally through the test of 8 normal-and high-strength concrete DSTCs. The results of the experimental study indicate that concrete-filling inner steel tubes of DSTCs results in a slightly increase in the compressive strength and decrease in the ultimate strain of concrete in DSTCs, compared to companion DSTCs with hollow inner steel tubes. The results also indicate that concrete in both types of DSTCs is confined effectively by FRP and steel tubes.


Sign in / Sign up

Export Citation Format

Share Document