Finite Element Simulation on Behavior of the High-Strength Concrete Filled High-Strength Square Steel Tube Middle-Long Columns under Axial Compressive Load

2014 ◽  
Vol 578-579 ◽  
pp. 340-345
Author(s):  
Guo Chang Li ◽  
Bo Wen Zhu ◽  
Yu Liu

In this paper, using ABAQUS, 16 high-strength concrete filled high-strength square steel tube middle-long columns’ axial compression process were simulated. The load-deflection relationships were obtained and the new combination in improving the bearing capacity and plastic deformation has a great advantage. Realization of length variation slenderness ratio by changing the length of column, this paper also study the influence of slenderness ratio, the main parameters of the high-strength concrete filled high-strength square steel tube middle-long column. It is found that both bearing capacity and the plastic capacity are associated with slenderness ratio.

2013 ◽  
Vol 634-638 ◽  
pp. 2752-2756 ◽  
Author(s):  
Qing Yun Ge ◽  
Cai Mei Li ◽  
Fu Lian Yang ◽  
Feng Yan Qin

Based on the twin shear unified strength theory, considering the impact of the intermediate principal stress σ2 and the different effects of material’ tensile and compressive properties, this paper deduced the axial compressive bearing capacity formula of core column with high strength concrete filled steel tube. Compared the results of the paper with the test, both coincide in good condition. The results show the validity of the formula. The theoretical formula provides a theoretical basis in the project application and design on the core column with high strength concrete filled steel tube.


2021 ◽  
Vol 11 (21) ◽  
pp. 10468
Author(s):  
Huanjun Jiang ◽  
Ahmed Salih Mohammed ◽  
Reza Andasht Kazeroon ◽  
Payam Sarir

The ultimate strength of composite columns is a significant factor for engineers and, therefore, finding a trustworthy and quick method to predict it with a good accuracy is very important. In the previous studies, the gene expression programming (GEP), as a new methodology, was trained and tested for a number of concrete-filled steel tube (CFST) samples and a GEP-based equation was proposed to estimate the ultimate bearing capacity of the CFST columns. In this study, however, the equation is considered to be validated for its results, and to ensure it is clearly capable of predicting the ultimate bearing capacity of the columns with high-strength concrete. Therefore, 32 samples with high-strength concrete were considered and they were modelled using the finite element method (FEM). The ultimate bearing capacity was obtained by FEM, and was compared with the results achieved from the GEP equation, and both were compared to the respective experimental results. It was evident from the results that the majority of values obtained from GEP were closer to the real experimental data than those obtained from FEM. This demonstrates the accuracy of the predictive equation obtained from GEP for these types of CFST column.


Sign in / Sign up

Export Citation Format

Share Document