Panel shear strength of steel coupling beam–wall connections in a hybrid wall system

2006 ◽  
Vol 62 (10) ◽  
pp. 1026-1038 ◽  
Author(s):  
Park Wan-Shin ◽  
Yun Hyun-Do
2005 ◽  
Vol 61 (7) ◽  
pp. 912-941 ◽  
Author(s):  
Wan-Shin Park ◽  
Hyun-Do Yun ◽  
Sun-Kyoung Hwang ◽  
Byung-Chan Han ◽  
Il Seung Yang

2012 ◽  
Vol 256-259 ◽  
pp. 737-741
Author(s):  
An Liang Song ◽  
Ming Zhou Su ◽  
Xu Dong Li ◽  
Yun Shi ◽  
Zhen Shan Wang

Based on the state-of-the-art of the research on connection of steel coupling beam to shear wall, The steel coupling beam has satisfactory seismic performance which is better than reinforced concrete coupling beams and composite coupling beams. In this paper, the existing research results were summarized and some views were put forward. It was useful to develop a seismic design method for hybrid coupled walls in China.


2013 ◽  
Vol 328 ◽  
pp. 965-969 ◽  
Author(s):  
Wan Shin Park ◽  
Jeong Eun Kim ◽  
Sun Woong Kim ◽  
Song Hee Yun ◽  
Nam Young Eom ◽  
...  

Hybrid coupled wall systems, where steel coupling beams couple two or more pseudo strain hardening cementitious composite (PSH2C) shear wall can be used in medium and high-rise construction subjected to earthquake. This paper addresses the panel shear strength of steel coupling beams - PSH2C shear wall connection. Test variables included the connection detail in hybrid coupled shear wall system. The results show that Specimens PSH2C-PSFF and PSH2C-PSFFT exhibits greater panel shears strength than Specimen PSH2C-PSF.


Author(s):  
Guoqiang LI ◽  
Mengde PANG ◽  
Feifei Sun ◽  
Liulian LI ◽  
Jianyun SUN

Coupled shear walls are widely used in high rise buildings, since they can not only provide efficient lateral stiffness but also behave outstanding energy dissipation ability especially for earthquake-resistance. Traditionally, the coupling beams are made of reinforced concrete, which are prone to shear failure due to low aspect ratio and greatly reduce the efficiency and ability of energy dissipation.  For overcoming the shortcoming of concrete reinforced coupling beams (RCB), an innovative steel coupling beams called two-level-yielding steel coupling beam (TYSCB) is invented to balance the demand of stiffness and energy dissipation for coupled shear walls. TYSCBs are made of two parallel steel beams with yielding at two different levels.  To verify and investigate the aseismic behaviour improvement of TYSCB-coupled shear walls, two 1/3 scale, 10-storey coupled shear wall specimens with TYSCB and RCB were tested under both gravity and lateral displacement reversals. These two specimens were designed with the same bearing capacity, thus to be easier to compare. The experimental TYSCB specimen demonstrated more robust cyclic performance. Both specimens reached 1% lateral drift, however, the TYSCB-coupled shear wall showed minimal strength degradation. Additionally, a larger amount of energy was dissipated during each test of the TYSCB specimen, compared with the RCB specimen. Based on the experimental results, design recommendations are provided.


2006 ◽  
Vol 18 (1) ◽  
pp. 135-145
Author(s):  
Wan-Shin Park ◽  
Hyun-Do Yun

2019 ◽  
Vol 201 ◽  
pp. 109820 ◽  
Author(s):  
Xiaodong Ji ◽  
Yuhao Cheng ◽  
Tongseng Leong ◽  
Yao Cui

Sign in / Sign up

Export Citation Format

Share Document