scholarly journals Finite element modelling and design of steel plate shear wall buckling-restrained by hat-section cold-formed steel members

2020 ◽  
Vol 174 ◽  
pp. 106274
Author(s):  
Ji-Ke Tan ◽  
Chao-Wei Gu ◽  
Mei-Ni Su ◽  
Yu-Hang Wang ◽  
Kang Wang ◽  
...  
2021 ◽  
pp. 136943322110542
Author(s):  
Mahdi Usefvand ◽  
Ahmad Maleki ◽  
Babak Alinejad

Coupled steel plate shear wall (C-SPSW) is one of the resisting systems with high ductility and energy absorption capacity. Energy dissipation in the C-SPSW system is accomplished by the bending and shear behavior of the link beams and SPSW. Energy dissipation and floor displacement control occur through link beams at low seismic levels, easily replaced after an earthquake. In this study, an innovative coupled steel plate shear wall with a yielding FUSE is presented. The system uses a high-ductility FUSE pin element instead of a link beam, which has good replaceability after the earthquake. In this study, four models of coupled steel plate shear walls were investigated with I-shaped link beam, I-shaped link beam with reduced beam section (RBS), box-link beam with RBS, and FUSE pin element under cyclic loading. The finite element method was used through ABAQUS software to develop the C-SPSW models. Two test specimens of coupled steel plate shear walls were validated to verify the finite element method results. Comparative results of the hysteresis curves obtained from the finite element analysis with the experimental curves indicated that the finite element model offered a good prediction of the hysteresis behavior of C-SPSW. It is demonstrated in this study that the FUSE pin can improve and increase the strength and energy dissipation of a C-SPSW system by 19% and 20%, respectively.


1999 ◽  
Vol 26 (5) ◽  
pp. 549-563 ◽  
Author(s):  
A Schumacher ◽  
G Y Grondin ◽  
G L Kulak

The behaviour under cyclic loading of unstiffened steel plate shear wall panels at their connection to the bounding beams and columns was investigated on full-size panel corner details. Four different infill panel connection details were tested to examine and compare their response to quasi-static cyclic loading. The load versus displacement response of the details showed gradual and stable deterioration at higher loads. The formation of tears in the connection details did not result in a loss of load-carrying capacity. In addition to the experimental program, a finite element model was developed to model the behaviour of one of the infill plate corner connection specimens. Results from the analysis showed that the finite element method can be used to obtain the load versus displacement behaviour of an infill panel-to-boundary member arrangement.Key words: cyclic loading, hysteresis, shear wall, steel, welded connection.


2021 ◽  
Author(s):  
Quzzafi Rehman

The use of cold-formed steel (CFS) is becoming popular in residential and commercial building as a cost-effective alternative to traditional wood materials. CFS provides high strength-to-weight ratio, resulting in permitting lighter structure and longer spans. If proper design considerations are not made, this longer span and lighter structure can result in vibration serviceability issues that may affect building occupant comfort. The available design methods to calculate the dynamic properties of floor systems (i.e. Canadian Wood Council Method, CWC; Applied Design Council Design Method, ATC; and Eurocode, EC5) are used for the design of light-frame timber-based systems, CFS C-shape joists, and structural steel and concrete floor systems. The applicability of such methods to I-shape CFS joists is as yet unavailable. In addition, the North American Code for Cold-formed Steel structural Members (CSA-S136-07) provides specifications of ultimate and serviceability limit state design of C-shape joists rather than I-shape joists. As such, this research was divided into three parts. Part 1 presented the results of laboratory and field study on the vibration of a recently developed CFS I-shape joist called “iSPAN.” The main objective of the first part was to understand the dynamic characteristics of iSPAN floor system, recommend an adequate model for predicting the dynamic response and modal properties of floor systems, and correlate its results with engineered wood I-joists in order to aid the design process. Part 2 presented comparison between the experimental findings and available code provisions for the design of CFS joists at ultimate and serviceability limit states. The effect of web utility holes was also considered on the dynamic properties, and ultimate strength of iSPAN joists. Part 3 presented a finite-element modeling and its verification with the experimental findings of the tested samples. Also, part 3 extended the finite element modelling to analyse I- and C-shape CFS joists to determine their ultimate strength and serviceability, with and without the presence of utility holes in the webs. Since CSA-S137-07 does not provide design provisions for the edge-stiffened (i.e. lipped) holes, a practical-design-oriented parametric study, using the finite-element modelling, was conducted on CFS I- and C-shape members with circular, slotted and tri-slotted, edge-stiffened, holes under flexural loading. The optimized profile of the edge-stiffened holes was obtained using the elastic-buckling analysis. The post-buckling finite-element analysis was then utilized to determine member flexural strength as affected by utility hole geometry and web depth. Results showed that the edge-stiffened holes can significantly improve the flexural strength of CFS joists. The data generated from the parametric study was used to develop new design provisions to predict the flexural strength of such joists with the presence of edge-stiffened holes.


2021 ◽  
Author(s):  
Quzzafi Rehman

The use of cold-formed steel (CFS) is becoming popular in residential and commercial building as a cost-effective alternative to traditional wood materials. CFS provides high strength-to-weight ratio, resulting in permitting lighter structure and longer spans. If proper design considerations are not made, this longer span and lighter structure can result in vibration serviceability issues that may affect building occupant comfort. The available design methods to calculate the dynamic properties of floor systems (i.e. Canadian Wood Council Method, CWC; Applied Design Council Design Method, ATC; and Eurocode, EC5) are used for the design of light-frame timber-based systems, CFS C-shape joists, and structural steel and concrete floor systems. The applicability of such methods to I-shape CFS joists is as yet unavailable. In addition, the North American Code for Cold-formed Steel structural Members (CSA-S136-07) provides specifications of ultimate and serviceability limit state design of C-shape joists rather than I-shape joists. As such, this research was divided into three parts. Part 1 presented the results of laboratory and field study on the vibration of a recently developed CFS I-shape joist called “iSPAN.” The main objective of the first part was to understand the dynamic characteristics of iSPAN floor system, recommend an adequate model for predicting the dynamic response and modal properties of floor systems, and correlate its results with engineered wood I-joists in order to aid the design process. Part 2 presented comparison between the experimental findings and available code provisions for the design of CFS joists at ultimate and serviceability limit states. The effect of web utility holes was also considered on the dynamic properties, and ultimate strength of iSPAN joists. Part 3 presented a finite-element modeling and its verification with the experimental findings of the tested samples. Also, part 3 extended the finite element modelling to analyse I- and C-shape CFS joists to determine their ultimate strength and serviceability, with and without the presence of utility holes in the webs. Since CSA-S137-07 does not provide design provisions for the edge-stiffened (i.e. lipped) holes, a practical-design-oriented parametric study, using the finite-element modelling, was conducted on CFS I- and C-shape members with circular, slotted and tri-slotted, edge-stiffened, holes under flexural loading. The optimized profile of the edge-stiffened holes was obtained using the elastic-buckling analysis. The post-buckling finite-element analysis was then utilized to determine member flexural strength as affected by utility hole geometry and web depth. Results showed that the edge-stiffened holes can significantly improve the flexural strength of CFS joists. The data generated from the parametric study was used to develop new design provisions to predict the flexural strength of such joists with the presence of edge-stiffened holes.


2019 ◽  
Vol 145 ◽  
pp. 106393 ◽  
Author(s):  
Krishanu Roy ◽  
Hieng Ho Lau ◽  
Tina Chui Huon Ting ◽  
Rehan Masood ◽  
Ankur Kumar ◽  
...  

2015 ◽  
Vol 752-753 ◽  
pp. 539-543 ◽  
Author(s):  
Anis Saggaff ◽  
Talal Alhajri ◽  
M. Ismail ◽  
Khaled Alenezi ◽  
Mohamad Ragae

This paper describes Finite Element Modeling (FEM) of a composite beam comprised of cold formed steel section and concrete slab designed as ferrocement. Software (ANSYS, version 11) was adopted to carry out the modeling of the proposed composite beam. Experimental tests were also been carried out for three simple supported composite beams. The proposed innovative precast composite beam specimens of cold-formed steel lipped channel sections (CFS) connected with ferrocement slab were tested till failure, under two point loads positioned atquarter length of the span from support. The results showed that close agreement was observed between the FEM and experimental results for ultimate loads and load-deflection responses.


Sign in / Sign up

Export Citation Format

Share Document