Development and evaluation of an assay for HIV-1 protease and reverse transcriptase drug resistance genotyping of all major group-M subtypes

2012 ◽  
Vol 54 (1) ◽  
pp. 21-25 ◽  
Author(s):  
Susan C. Aitken ◽  
Aletta Kliphuis ◽  
Carole L. Wallis ◽  
Mei Ling Chu ◽  
Quirine Fillekes ◽  
...  
2020 ◽  
Vol 18 (3) ◽  
pp. 210-218
Author(s):  
Guolong Yu ◽  
Yan Li ◽  
Xuhe Huang ◽  
Pingping Zhou ◽  
Jin Yan ◽  
...  

Background: HIV-1 CRF55_01B was first reported in 2013. At present, no report is available regarding this new clade’s polymorphisms in its functionally critical regions protease and reverse transcriptase. Objective: To identify the diversity difference in protease and reverse transcriptase between CRF55_01B and its parental clades CRF01_AE and subtype B; and to investigate CRF55_01B’s drug resistance mutations associated with the protease inhibition and reverse transcriptase inhibition. Methods: HIV-1 RNA was extracted from plasma derived from a MSM population. The reverse transcription and nested PCR amplification were performed following our in-house PCR procedure. Genotyping and drug resistant-associated mutations and polymorphisms were identified based on polygenetic analyses and the usage of the HIV Drug Resistance Database, respectively. Results: A total of 9.24 % of the identified CRF55_01B sequences bear the primary drug resistance. CRF55_01B contains polymorphisms I13I/V, G16E and E35D that differ from those in CRF01_AE. Among the 11 polymorphisms in the RT region, seven were statistically different from CRF01_AE’s. Another three polymorphisms, R211K (98.3%), F214L (98.3%), and V245A/E (98.3 %.), were identified in the RT region and they all were statistically different with that of the subtype B. The V179E/D mutation, responsible for 100% potential low-level drug resistance, was found in all CRF55_01B sequences. Lastly, the phylogenetic analyses demonstrated 18 distinct clusters that account for 35% of the samples. Conclusions: CRF55_01B’s pol has different genetic diversity comparing to its counterpart in CRF55_01B’s parental clades. CRF55_01B has a high primary drug resistance presence and the V179E/D mutation may confer more vulnerability to drug resistance.


PLoS ONE ◽  
2012 ◽  
Vol 7 (4) ◽  
pp. e34708 ◽  
Author(s):  
Michelle Bronze ◽  
Kim Steegen ◽  
Carole L. Wallis ◽  
Hans De Wolf ◽  
Maria A. Papathanasopoulos ◽  
...  

2021 ◽  
Vol 19 ◽  
Author(s):  
Rabia Can Sarinoglu ◽  
Uluhan Sili ◽  
Ufuk Hasdemir ◽  
Burak Aksu ◽  
Guner Soyletir ◽  
...  

Background: The World Health Organization (WHO) recommends the surveillance of transmitted drug resistance mutations (TDRMs) to ensure the effectiveness and sustainability of HIV treatment programs. Objective: Our aim was to determine the TDRMs and evaluate the distribution of HIV-1 subtypes using and compared next-generation sequencing (NGS) and Sanger-based sequencing (SBS) in a cohort of 44 antiretroviral treatment-naïve patients. Methods: All samples that were referred to the microbiology laboratory for HIV drug resistance analysis between December 2016 and February 2018 were included in the study. After exclusions, 44 treatment-naive adult patients with a viral load of >1000 copies/mL were analyzed. DNA sequencing for reverse transcriptase and protease regions was performed using both DeepChek ABL single round kit and Sanger-based ViroSeq HIV-1 Genotyping System. The mutations and HIV-1 subtypes were analyzed using the Stanford HIVdb version 8.6.1 Genotypic Resistance software, and TDRMs were assessed using the WHO surveillance drug-resistance mutation database. HIV-1 subtypes were confirmed by constructing a maximum-likelihood phylogenetic tree using Los Alamos IQ-Tree software. Results: NGS identified nucleos(t)ide reverse transcriptase inhibitor (NRTI)-TDRMs in 9.1% of the patients, non-nucleos(t)ide reverse transcriptase inhibitor (NNRTI)-TDRMs in 6.8% of the patients, and protease inhibitor (PI)-TDRMs in 18.2% of the patients at a detection threshold of ≥1%. Using SBS, 2.3% and 6.8% of the patients were found to have NRTI- and NNRTI-TDRMs, respectively, but no major PI mutations were detected. M41L, L74I, K65R, M184V, and M184I related to NRTI, K103N to NNRTI, and N83D, M46I, I84V, V82A, L24I, L90M, I54V to the PI sites were identified using NGS. Most mutations were found in low-abundance (frequency range: 1.0% - 4.7%) HIV-1 variants, except M41L and K103N. The subtypes of the isolates were found as follows; 61.4% subtype B, 18.2% subtype B/CRF02_AG recombinant, 13.6% subtype A, 4.5% CRF43_02G, and 2.3% CRF02_AG. All TDRMs, except K65R, were detected in HIV-1 subtype B isolates.. Conclusion: The high diversity of protease site TDRMs in the minority HIV-1 variants and prevalence of CRFs were remarkable in this study. All minority HIV-1 variants were missed by conventional sequencing. TDRM prevalence among minority variants appears to be decreasing over time at our center.


2010 ◽  
Vol 4 ◽  
pp. BBI.S6247 ◽  
Author(s):  
Marcin Kierczak ◽  
Michał Dramiński ◽  
Jacek Koronacki ◽  
Jan Komorowski

Motivation Despite more than two decades of research, HIV resistance to drugs remains a serious obstacle in developing efficient AIDS treatments. Several computational methods have been developed to predict resistance level from the sequence of viral proteins such as reverse transcriptase (RT) or protease. These methods, while powerful and accurate, give very little insight into the molecular interactions that underly acquisition of drug resistance/hypersusceptibility. Here, we attempt at filling this gap by using our Monte Carlo feature selection and interdependency discovery method (MCFS-ID) to elucidate molecular interaction networks that characterize viral strains with altered drug resistance levels. Results We analyzed a number of HIV-1 RT sequences annotated with drug resistance level using the MCFS-ID method. This let us expound interdependency networks that characterize change of drug resistance to six selected RT inhibitors: Abacavir, Lamivudine, Stavudine, Zidovudine, Tenofovir and Nevirapine. The networks consider interdependencies at the level of physicochemical properties of mutating amino acids, eg,: polarity. We mapped each network on the 3D structure of RT in attempt to understand the molecular meaning of interacting pairs. The discovered interactions describe several known drug resistance mechanisms and, importantly, some previously unidentified ones. Our approach can be easily applied to a whole range of problems from the domain of protein engineering. Availability A portable Java implementation of our MCFS-ID method is freely available for academic users and can be obtained at: http://www.ipipan.eu/staff/m.draminski/software.htm .


2021 ◽  
Vol 13 (1) ◽  
pp. 70-79
Author(s):  
Thierry Ingabire ◽  
A. V. Semenov ◽  
E. V. Esaulenko ◽  
E. B. Zueva ◽  
A. N. Schemelev ◽  
...  

There is concern that the widespread use of antiretroviral drugs (ARV) to treat human immunodeficiency virus 1 (HIV-1) infection may result in the emergence of transmission of drug-resistant virus among persons newly infected with HIV-1. Russia is one of a growing number of countries in the world where drug-resistant HIV is becoming a serious health problem because it has the potential to compromise the efficacy of antiretroviral therapy (ART) at the population level.Materials and methods. We performed a genetic analysis of the HIV-1 plasma derived pol gene among the newly diagnosed ART-naïve HIV-1 infected patients during the period from November 2018 to October 2019 in the St. Petersburg Clinical Infectious Diseases Hospital named after S.P. Botkin. We used reverse transcriptase polymerase chain reaction (RT-PCR) followed by direct sequencing of PCR products to determine the prevalence of primary drug resistance (PDR) conferring mutations. HIV-1 genotypes were determined by phylogenetic analysis.Results. The predominant HIV-1 subtype was A1 (87.2%), followed by B (11.8%) and CRF06_cpx (1%). The overall prevalence of PDR was 11%. Virus with known resistance-conferring mutations to any nucleoside reverse transcriptase inhibitors (NRTIs) was found in 8 individuals, to any non NRTIs in 5 subjects, and to any protease inhibitors in 1 case. Multidrug-resistant virus was identified in 2 individuals (2%).Conclusion. The distribution of HIV-1 genotypes in St. Petersburg, Russia is diverse. The emerging prevalence of PDR in ART-naïve patients demonstrates the significance of constant monitoring due to the challenges it presents towards treatment.


AIDS ◽  
2008 ◽  
Vol 22 (4) ◽  
pp. 497-501 ◽  
Author(s):  
Mary Kearney ◽  
Sarah Palmer ◽  
Frank Maldarelli ◽  
Wei Shao ◽  
Michael A Polis ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document