Influence of formulation parameters on encapsulation of doxycycline in PLGA microspheres prepared by double emulsion technique for the treatment of periodontitis

2019 ◽  
Vol 52 ◽  
pp. 263-271 ◽  
Author(s):  
Muhanad Ali ◽  
X. Frank Walboomers ◽  
John A. Jansen ◽  
Fang Yang
2011 ◽  
Vol 7 (2) ◽  
pp. 255-262 ◽  
Author(s):  
Mohamed Ayoub ◽  
Naveed Ahmed ◽  
Nader Kalaji ◽  
Catherine Charcosset ◽  
Ayoub Magdy ◽  
...  

Author(s):  
Seema Kohli ◽  
Abhisek Pal ◽  
Suchit Jain

Objective: The purpose of this research work was to develop and evaluate microspheres appropriate for controlled release of zidovudine (AZT).Methods: The AZT loaded polylactide-co-glycolide (PLGA) microspheres were prepared by W/O/O double emulsion solvent diffusion method. Compatibility of drug and polymer was studied by Fourier-transform infrared spectroscopy (FTIR). The influence of formulation factors (drug: polymer ratio, stirring speed, the concentration of surfactant) on particle size encapsulation efficiency and in vitro release characteristics of the microspheres was investigated. Release kinetics was studied and stability study was performed as per ICH guidelines.Results: Scanning electron microscopy (SEM) images show good reproducibility of microspheres from different batches. The average particle size was in the range of 216-306 μm. The drug-loaded microspheres showed 74.42±5.08% entrapment efficiency. The cumulative percentage released in phosphate Buffer solution (PBS) buffer was found to be 55.32±5.89 to 74.42±5.08 %. The highest regressions (0.981) were obtained for zero order kinetics followed by Higuchi (0.968) and first order (0.803).Conclusion: Microsphere prepared by double emulsion solvent diffusion method was investigated and the results revealed that 216-306 μm microsphere was successfully encapsulated in a polymer. FT-IR analysis, entrapment efficiency and SEM Studies revealed the good reproducibility from batch to batch. The microspheres were of an appropriate size and suitable for oral administration. Thus the current investigation show promising results of PLGA microspheres as a matrix for drug delivery and merit for In vivo studies for scale up the technology.


2012 ◽  
Vol 466-467 ◽  
pp. 405-410 ◽  
Author(s):  
Z.H. Li ◽  
Ji Min Wu ◽  
Y.L. Zhao ◽  
J. Guan ◽  
S.J. Huang ◽  
...  

The present investigation was aimed at optimization of BMPs loaded PLGA microspheres formulations resulting in improved encapsulation efficiency and sustained release of BMPs by varying the molecular weight and copolymer composition of PLGA. Double-emulsion solvent evaporation method was used to prepare the microspheres. The effect of polymer molecular weight and copolymer composition on particle properties and release behavior in vitro was reported. The particle size and encapsulation efficiency increased with increase in molecular weight and lactide content of PLGA. While BMPs release in vitro decreased with increase in molecular weight and lactide content of PLGA. SEM pictures revealed that almost all microspheres were spherical but internal morphology was different. The morphology of PLGA microspheres with exorbitant molecular weight(100kD) was anomalistic whereas the morphology of PLGA microspheres with higher glycolide content(50) have porous structures.


Author(s):  
A O Kamel ◽  
G A Awad ◽  
A S Geneidi ◽  
N D Mortada ◽  
N D Mortada

2019 ◽  
Author(s):  
T S ◽  
Philippa J. Hooper ◽  
Gabi Kaminski ◽  
Christopher F. van der Walle ◽  
J. Axel Zeitler

Biodegradable poly lactic-co-glycolic acid (PLGA) microspheres can be used to encapsulate peptide and offer a promising drug delivery vehicle. In this work we investigate the dynamics of PLGA microspheres prepared by freeze-drying and the molecular mobility at lower temperatures leading to the glass transition temperature, using temperature-variable terahertz time-domain spectroscopy (THz-TDS) experiments. The microspheres were prepared using a water-in-oil-in-water (w/o/w) double emulsion technique and subsequent freeze-drying of the samples. Physical characterisation was performed by morphology measurements, scanning electron microscopy (SEM), and helium pycnometry. The THz-TDS data show two distinct transition processes, T<sub>g,β</sub> in the range of 167-219 K, associated with local motions, and T<sub>g,α</sub> in the range of 313-330 K associated with large-scale motions, for the microspheres examined. Using FTIR measurements in the mid-infrared we were able to characterise the interactions between a model polypeptide, exendin-4, and the PLGA copolymer. We observe a relationship between the experimentally determined T<sub>g,β</sub> and T<sub>g,α</sub> and free volume and microsphere dynamics. <br>


Sign in / Sign up

Export Citation Format

Share Document