bovine hemoglobin
Recently Published Documents


TOTAL DOCUMENTS

397
(FIVE YEARS 52)

H-INDEX

44
(FIVE YEARS 6)

2022 ◽  
Vol 1249 ◽  
pp. 131550
Author(s):  
Afreen Banu ◽  
Rizwan Hasan Khan ◽  
Mohssen T.A. Qashqoosh ◽  
Yahiya Kadaf Manea ◽  
Mohammad Furkan ◽  
...  

2022 ◽  
Author(s):  
Xue Chen ◽  
Jinyue Chai ◽  
Baodong Sun ◽  
Xue Yang ◽  
Feng Zhang ◽  
...  

In this study, the carbon-based Cu2+-immobilized metal-organic framework modified molecularly imprinted polymer (C@GI@Cu-MOFs@MIPs) adsorbent was prepared using bovine hemoglobin (BHb) as a template molecule with carbon spheres as carriers for...


2021 ◽  
Vol 8 ◽  
Author(s):  
Min Cao ◽  
Yong Zhao ◽  
Hongli He ◽  
Ruiming Yue ◽  
Lingai Pan ◽  
...  

If not cured promptly, tissue ischemia and hypoxia can cause serious consequences or even threaten the life of the patient. Hemoglobin-based oxygen carrier-201 (HBOC-201), bovine hemoglobin polymerized by glutaraldehyde and stored in a modified Ringer's lactic acid solution, has been investigated as a blood substitute for clinical use. HBOC-201 was approved in South Africa in 2001 to treat patients with low hemoglobin (Hb) levels when red blood cells (RBCs) are contraindicated, rejected, or unavailable. By promoting oxygen diffusion and convective oxygen delivery, HBOC-201 may act as a direct oxygen donor and increase oxygen transfer between RBCs and between RBCs and tissues. Therefore, HBOC-201 is gradually finding applications in treating various ischemic and hypoxic diseases including traumatic hemorrhagic shock, hemolysis, myocardial infarction, cardiopulmonary bypass, perioperative period, organ transplantation, etc. However, side effects such as vasoconstriction and elevated methemoglobin caused by HBOC-201 are major concerns in clinical applications because Hbs are not encapsulated by cell membranes. This study summarizes preclinical and clinical studies of HBOC-201 applied in various clinical scenarios, outlines the relevant mechanisms, highlights potential side effects and solutions, and discusses the application prospects. Randomized trials with large samples need to be further studied to better validate the efficacy, safety, and tolerability of HBOC-201 to the extent where patient-specific treatment strategies would be developed for various clinical scenarios to improve clinical outcomes.


2021 ◽  
pp. 000370282110351
Author(s):  
Shilpi Chaudhary ◽  
Harsharan Kaur ◽  
Harpreet Kaur ◽  
Bhawna Rana ◽  
Deepak Tomar ◽  
...  

* These authors contributed equally to this work. The molecular-level insight of protein adsorption and its kinetics at interfaces is crucial because of its multifold role in diverse fundamental biological processes and applications. In the present study, the sum frequency generation (SFG) vibrational spectroscopy has been employed to demonstrate the adsorption process of bovine hemoglobin (BHb) protein molecules at the air–water interface at interfacial isoelectric point of the protein. It has been observed that surface coverage of BHb molecules significantly influences the arrangement of the protein molecules at the interface. The time-dependent SFG studies at two different frequencies in the fingerprint region elucidate the kinetics of protein denaturation process and its influence on the hydrogen-bonding network of interfacial water molecules at the air–water interface. The initial growth kinetics suggests the synchronized behavior of protein adsorption process with the structural changes in the interfacial water molecules. Interestingly, both the events carry similar characteristic time constants. However, the conformational changes in the protein structure due to the denaturation process stay for a long time, whereas the changes in water structure reconcile quickly. It is revealed that the protein denaturation process is followed by the advent of strongly hydrogen-bonded water molecules at the interface. In addition, we have also carried out the surface tension kinetics measurements to complement the findings of our SFG spectroscopic results.


Polymers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 2313
Author(s):  
Song Liu ◽  
Yasuhito Mukai

Electrospun polyvinyl alcohol (PVA) nanofiber fabric was modified by Cibacron Blue F3GA (CB) to enhance the affinity of the fabric. Batch experiments were performed to study the nanofiber fabric’s bovine hemoglobin (BHb) adsorption capacity at different protein concentrations before and after modification. The maximum BHb adsorption capacity of the modified nanofiber fabric was 686 mg/g, which was much larger than the 58 mg/g of the original fabric. After that, the effect of feed concentration and permeation rate on the dynamic adsorption behaviors for BHb of the nanofiber fabric was investigated. The pH impact on BHb and bovine serum albumin (BSA) adsorption was examined by static adsorption experiments of single protein solutions. The selective separation experiments of the BHb–BSA binary solution were carried out at the optimal pH value, and a high selectivity factor of 5.45 for BHb was achieved. Finally, the reusability of the nanofiber fabric was examined using three adsorption–elution cycle tests. This research demonstrated the potential of the CB-modified PVA nanofiber fabric in protein adsorption and selective separation.


Sign in / Sign up

Export Citation Format

Share Document