scholarly journals Local C0,α estimates for viscosity solutions of Neumann-type boundary value problems

2006 ◽  
Vol 225 (1) ◽  
pp. 202-241 ◽  
Author(s):  
Guy Barles ◽  
Francesca Da Lio
2015 ◽  
Vol 22 (1) ◽  
Author(s):  
Levan Giorgashvili ◽  
Aslan Jaghmaidze ◽  
Giorgi Karseladze ◽  
Guram Sadunishvili

AbstractWe consider the stationary oscillation case of the theory of linear thermoelasticity with microtemperatures of microstretch materials. A representation formula of a general solution of a homogeneous system of differential equations is written in terms of eight metaharmonic functions. Such formulas are very convenient and useful in many specific problems of concrete geometry. We demonstrate an application of these formulas to Dirichlet and Neumann type boundary value problems in a ball. Explicit solutions in the form of absolutely and uniformly convergent series are constructed.


2004 ◽  
Vol 11 (1) ◽  
pp. 49-58
Author(s):  
M. Basheleishvili

Abstract Using the complex representation formulae of regular solutions of equations of statics of the theory of elastic mixtures, we construct the explicit solutions of the Dirichlet and Neumann type boundary value problems for an annulus in the form of absolutely and uniformly convergent series.


2021 ◽  
Vol 11 (3) ◽  
Author(s):  
Heinrich Begehr ◽  
Bibinur Shupeyeva

AbstractThere are three basic boundary value problems for the inhomogeneous polyanalytic equation in planar domains, the well-posed iterated Schwarz problem, and further two over-determined iterated problems of Dirichlet and Neumann type. These problems are investigated in planar domains having a harmonic Green function. For the Schwarz problem, treated earlier [Ü. Aksoy, H. Begehr, A.O. Çelebi, AV Bitsadze’s observation on bianalytic functions and the Schwarz problem. Complex Var Elliptic Equ 64(8): 1257–1274 (2019)], just a modification is mentioned. While the Dirichlet problem is completely discussed for arbitrary order, the Neumann problem is just handled for order up to three. But a generalization to arbitrary order is likely.


2021 ◽  
Vol 182 ◽  
pp. 411-427
Author(s):  
Nadirah Mohd Nasir ◽  
Zanariah Abdul Majid ◽  
Fudziah Ismail ◽  
Norfifah Bachok

2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Roland Duduchava

AbstractThe purpose of the present research is to investigate a general mixed type boundary value problem for the Laplace–Beltrami equation on a surface with the Lipschitz boundary 𝒞 in the non-classical setting when solutions are sought in the Bessel potential spaces \mathbb{H}^{s}_{p}(\mathcal{C}), \frac{1}{p}<s<1+\frac{1}{p}, 1<p<\infty. Fredholm criteria and unique solvability criteria are found. By the localization, the problem is reduced to the investigation of model Dirichlet, Neumann and mixed boundary value problems for the Laplace equation in a planar angular domain \Omega_{\alpha}\subset\mathbb{R}^{2} of magnitude 𝛼. The model mixed BVP is investigated in the earlier paper [R. Duduchava and M. Tsaava, Mixed boundary value problems for the Helmholtz equation in a model 2D angular domain, Georgian Math. J.27 (2020), 2, 211–231], and the model Dirichlet and Neumann boundary value problems are studied in the non-classical setting. The problems are investigated by the potential method and reduction to locally equivalent 2\times 2 systems of Mellin convolution equations with meromorphic kernels on the semi-infinite axes \mathbb{R}^{+} in the Bessel potential spaces. Such equations were recently studied by R. Duduchava [Mellin convolution operators in Bessel potential spaces with admissible meromorphic kernels, Mem. Differ. Equ. Math. Phys.60 (2013), 135–177] and V. Didenko and R. Duduchava [Mellin convolution operators in Bessel potential spaces, J. Math. Anal. Appl.443 (2016), 2, 707–731].


2016 ◽  
Vol 56 (3) ◽  
pp. 245
Author(s):  
Marzena Szajewska ◽  
Agnieszka Tereszkiewicz

Boundary value problems are considered on a simplex <em>F</em> in the real Euclidean space R<sup>2</sup>. The recent discovery of new families of special functions, orthogonal on <em>F</em>, makes it possible to consider not only the Dirichlet or Neumann boundary value problems on <em>F</em>, but also the mixed boundary value problem which is a mixture of Dirichlet and Neumann type, ie. on some parts of the boundary of <em>F</em> a Dirichlet condition is fulfilled and on the other Neumann’s works.


Sign in / Sign up

Export Citation Format

Share Document