Ni-based catalyst over rice husk-derived silica for the CO2 methanation reaction: Effect of Ru addition

2021 ◽  
Vol 9 (3) ◽  
pp. 105173
Author(s):  
M.A. Paviotti ◽  
B.M. Faroldi ◽  
L.M. Cornaglia
2019 ◽  
Vol 377 ◽  
pp. 120461 ◽  
Author(s):  
Antonio Ricca ◽  
Livia Truda ◽  
Vincenzo Palma

2020 ◽  
Vol 22 (34) ◽  
pp. 18788-18797 ◽  
Author(s):  
Gianfranco Giorgianni ◽  
Chalachew Mebrahtu ◽  
Manfred Erwin Schuster ◽  
Alexander Ian Large ◽  
Georg Held ◽  
...  

In situ surface sensitive XPS and NEXAFS clarify the promotion effect of Fe in Ni–Fe/hydrotalcite-derived catalysts for the CO2 methanation reaction.


2018 ◽  
Vol 307 ◽  
pp. 205-211 ◽  
Author(s):  
Dominik Wierzbicki ◽  
Monika Motak ◽  
Teresa Grzybek ◽  
Maria Elena Gálvez ◽  
Patrick Da Costa

2021 ◽  
pp. 150421
Author(s):  
Wojciech Gac ◽  
Witold Zawadzki ◽  
Grzegorz Słowik ◽  
Marcin Kuśmierz ◽  
Stanislaw Dzwigaj

2020 ◽  
Author(s):  
Gheorghe Lazaroiu ◽  
Dana-Alexandra Ciupageanu ◽  
Lucian Mihaescu ◽  
Rodica-Manuela Grigoriu

Conversion technologies able to transform renewable energy sources (RES) based electricity in gaseous fuels, which can be stored over long timeframes, represent a key focus point considering the low carbon society development. Thus, Power-to-Gas technologies emerge as a viable solution to mitigate the variability of RES power generation, enabling spatial and temporal balancing of production vs. demand mismatches. An additional benefit in this context is brought by the decarbonization facilities, employing polluting carbon dioxide (CO2) emissions and RES-based electricity to produce synthetic natural gas with high methane (CH4) concentration. The fuel obtained can be stored or injected in the gas distribution infrastructure, becoming a clean energy vector. This paper investigates the functional parameters of such technologies, aiming to comparatively analyze their suitability for further integration in hybrid and ecofriendly energy systems. Given the stability of CO2 molecule, a catalyst must be used to overcome the methanation reaction kinetics limitations. Therefore, the required conditions (in terms of pressure and temperature) for CO2 methanation reaction unfolding are analyzed first. Further, CO2 conversion rate and CH4 selectivity are investigated in order to provide a detailed comparison of available technologies in the field, addressing moreover the particularities of catalyst preparation processes. It is found that Nickel (Ni) based catalysts are performing well, achieving good performances even at atmospheric pressure and low temperatures. It is remarkable that, within a [300,500]℃ temperature range, Ni-based catalysts enable a CO2 conversion rate over 78% with a CH4 selectivity of up to 100%. Last, integration perspectives and benefits are discussed, highlighting the crucial importance of the results presented in this paper.


2022 ◽  
Author(s):  
Dominik Meyer ◽  
Jannik Schumacher ◽  
Jens Friedland ◽  
Robert Güttel

The utilization of renewable electricity for power-to-gas (PtG) applications induces fluctuations in the H2 availability from water electrolysis. For subsequent methanation of CO or CO2 the unsteady-state operation of the respective reactor allows to minimize H2 storage capacities. However, the impact of temporal fluctuations in feed gas composition on the methanation reaction and the respective transient kinetics has not yet been fully understood. We investigated the methanation of various CO/CO2 (COx) feed gas mixtures under periodically changing gas compositions with emphasis on the effect of the frequency on the reactor response. We show that the frequency response of CH4 exhibits a characteristic hysteresis, which depends on the switching direction between COx-lean and COx-rich feeds and their composition. From the shape of the hysteresis we are able to conclude on the preferred COx species being hydrogenated to CH4 under respective conditions, which also provides mechanistic insights. By applying high cycling frequencies, the highly reactive species present under CO methanation conditions can even selectively be activated, which explains the higher reactivity compared to steady-state conditions reported, frequently.


Sign in / Sign up

Export Citation Format

Share Document