The asymmetrical-structure of supramolecular precursor to improve internal electric field for simultaneously enhancing contaminant degradation and H2O2 production performance

Author(s):  
Yujuan Pu ◽  
Fucheng Bao ◽  
Dongyu Wang ◽  
Xindan Zhang ◽  
Zhicheng Guo ◽  
...  
2021 ◽  
Vol 223 ◽  
pp. 110948
Author(s):  
Alban Lafuente-Sampietro ◽  
Katsuhisa Yoshida ◽  
Shenghao Wang ◽  
Shogo Ishizuka ◽  
Hajime Shibata ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Xuehua Wang ◽  
Xianghu Wang ◽  
Jianfeng Huang ◽  
Shaoxiang Li ◽  
Alan Meng ◽  
...  

AbstractConstruction of Z-scheme heterostructure is of great significance for realizing efficient photocatalytic water splitting. However, the conscious modulation of Z-scheme charge transfer is still a great challenge. Herein, interfacial Mo-S bond and internal electric field modulated Z-scheme heterostructure composed by sulfur vacancies-rich ZnIn2S4 and MoSe2 was rationally fabricated for efficient photocatalytic hydrogen evolution. Systematic investigations reveal that Mo-S bond and internal electric field induce the Z-scheme charge transfer mechanism as confirmed by the surface photovoltage spectra, DMPO spin-trapping electron paramagnetic resonance spectra and density functional theory calculations. Under the intense synergy among the Mo-S bond, internal electric field and S-vacancies, the optimized photocatalyst exhibits high hydrogen evolution rate of 63.21 mmol∙g−1·h−1 with an apparent quantum yield of 76.48% at 420 nm monochromatic light, which is about 18.8-fold of the pristine ZIS. This work affords a useful inspiration on consciously modulating Z-scheme charge transfer by atomic-level interface control and internal electric field to signally promote the photocatalytic performance.


Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 638
Author(s):  
Sanam SaeidNahaei ◽  
Hyun-Jun Jo ◽  
Sang Jo Lee ◽  
Jong Su Kim ◽  
Sang Jun Lee ◽  
...  

For examining the carrier movements through tunnel junction, electrically and optically-biased photoreflectance spectroscopy (EBPR and OBPR) were used to investigate the internal electric field in the InGaP/GaAs dual junction solar cell at room temperature. At InGaP and GaAs, the strength of p-n junction electric fields (Fpn) was perturbed by the external DC bias voltage and CW light intensity for EBPR and OBPR experiments, respectively. Moreover, the Fpn was evaluated using the Fast Fourier Transform (FFT) of the Franz—Keldysh oscillation from PR spectra. In the EBPR, the electric field decreased by increasing the DC bias voltage, which also decreased the potential barrier. In OBPR, when incident CW light is absorbed by the top cell, the decrement of the Fpn in the GaAs cell indicates that the photogenerated carriers are accumulated near the p-n junction. Photogenerated carriers in InGaP can pass through the tunnel junction, and the PR results show the contribution of the modification of the electric field by the photogenerated carriers in each cell. We suggest that PR spectroscopy with optical-bias and electrical-bias could be analyzed using the information of the photogenerated carrier passed through the tunnel junction.


2006 ◽  
Vol 949 ◽  
Author(s):  
Jeffrey P. Calame

ABSTRACTResearch on the microstructure-based modeling of composite dielectrics for capacitor applications is described. Methods for predicting the composite dielectric permittivity and internal electric field distributions within the microstructure using finite difference quasi-electrostatic modeling are described, along with methods of generating realistic model spaces of particulate microstructures. An existing algorithm for generating random, monosized spheres-in-a-dielectric matrix model spaces is modified to allow the treatment of bimodal composites in which small particles are deliberately segregated into the spaces between large particles. Such composites can have substantially higher total volumetric filling fractions of particles, leading to higher composite permittivity. The variations in permittivity with the filling fractions of bimodal inclusions are studied with the new model, with cases covering three different types of polymer matrix material. The effect of the small particle additions on the electric field statistics within the polymer matrix is also explored.


Sign in / Sign up

Export Citation Format

Share Document