scholarly journals Interfacial chemical bond and internal electric field modulated Z-scheme Sv-ZnIn2S4/MoSe2 photocatalyst for efficient hydrogen evolution

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Xuehua Wang ◽  
Xianghu Wang ◽  
Jianfeng Huang ◽  
Shaoxiang Li ◽  
Alan Meng ◽  
...  

AbstractConstruction of Z-scheme heterostructure is of great significance for realizing efficient photocatalytic water splitting. However, the conscious modulation of Z-scheme charge transfer is still a great challenge. Herein, interfacial Mo-S bond and internal electric field modulated Z-scheme heterostructure composed by sulfur vacancies-rich ZnIn2S4 and MoSe2 was rationally fabricated for efficient photocatalytic hydrogen evolution. Systematic investigations reveal that Mo-S bond and internal electric field induce the Z-scheme charge transfer mechanism as confirmed by the surface photovoltage spectra, DMPO spin-trapping electron paramagnetic resonance spectra and density functional theory calculations. Under the intense synergy among the Mo-S bond, internal electric field and S-vacancies, the optimized photocatalyst exhibits high hydrogen evolution rate of 63.21 mmol∙g−1·h−1 with an apparent quantum yield of 76.48% at 420 nm monochromatic light, which is about 18.8-fold of the pristine ZIS. This work affords a useful inspiration on consciously modulating Z-scheme charge transfer by atomic-level interface control and internal electric field to signally promote the photocatalytic performance.

2021 ◽  
Author(s):  
Xuehua Wang ◽  
Xianghu Wang ◽  
Jianfeng Huang ◽  
Shaoxiang Li ◽  
Alan meng ◽  
...  

Abstract Construction of Z-scheme heterostructure is of momentous significance for realizing efficient photocatalytic water splitting. However, the consciously modulate of Z-scheme charge transfer is still a great challenge. Herein, interfacial Mo-S bond and internal electric field modulated Z-Scheme heterostructure composed by sulfur vacancies-rich ZnIn2S4 (Vs-ZIS) and MoSe2 was rationally fabricated for efficient photocatalytic hydrogen evolution. Systematic investigations reveal that Mo-S bond and internal electric field induce the Z-scheme charge transfer mechanism as confirmed by the SPS and DMPO spin-trapping EPR spectra. Under the intense synergy among the Mo-S bond, internal electric field and S-vacancies, the optimized photocatalyst exhibits ultrahigh hydrogen evolution rate of 63.21 mmol∙g-1·h-1 with an apparent quantum yield of 76.48% at 420 nm monochromatic light, which is about 18.8-fold of the pristine ZIS. This work affords a new inspiration on consciously modulating Z-scheme charge transfer by atomic-level interface control and internal electric field to signally promote the photocatalytic performance.


2019 ◽  
Author(s):  
Yan Wang ◽  
Sagar Udyavara ◽  
Matthew Neurock ◽  
C. Daniel Frisbie

<div> <div> <div> <p> </p><div> <div> <div> <p>Electrocatalytic activity for hydrogen evolution at monolayer MoS2 electrodes can be enhanced by the application of an electric field normal to the electrode plane. The electric field is produced by a gate electrode lying underneath the MoS2 and separated from it by a dielectric. Application of a voltage to the back-side gate electrode while sweeping the MoS2 electrochemical potential in a conventional manner in 0.5 M H2SO4 results in up to a 140-mV reduction in overpotential for hydrogen evolution at current densities of 50 mA/cm2. Tafel analysis indicates that the exchange current density is correspondingly improved by a factor of 4 to 0.1 mA/cm2 as gate voltage is increased. Density functional theory calculations support a mechanism in which the higher hydrogen evolution activity is caused by gate-induced electronic charge on Mo metal centers adjacent the S vacancies (the active sites), leading to enhanced Mo-H bond strengths. Overall, our findings indicate that the back-gated working electrode architecture is a convenient and versatile platform for investigating the connection between tunable electronic charge at active sites and overpotential for electrocatalytic processes on ultrathin electrode materials.</p></div></div></div><br><p></p></div></div></div>


Author(s):  
Haofan Yang ◽  
Xiaobo Li ◽  
Reiner Sebastian Sprick ◽  
Andrew I. Cooper

A library of 237 organic binary/ternary nanohybrids consisting of conjugated polymers donors and both fullerene and non-fullerene molecular acceptors was prepared and screened for sacrificial photocatalytic hydrogen evolution. These donor-acceptor nanohybrids (DANHs) showed significantly enhanced hydrogen evolution rates compared with the parent donor or acceptor compounds. DANHs of <a></a><a>a polycarbazole</a>-based donor combined with a methanofullerene acceptor (PCDTBT/PC<sub>60</sub>BM) showed a high hydrogen evolution rate of 105.2 mmol g<sup>-1</sup> h<sup>-1</sup> under visible light (λ > 420 nm). This DANH photocatalyst produced 5.9 times more hydrogen than a sulfone-containing polymer (P10) under the same conditions, which is one of the most efficient organic photocatalysts reported so far. An apparent quantum yield of hydrogen evolution of 3.0 % at 595 nm was measured for this DANH. The photocatalytic activity of the DANHs, which in optimized cases reached 179.0 mmol g<sup>-1</sup> h<sup>-1</sup>, is attributed to efficient charge transfer at the polymer donor/molecular acceptor interface. We also show that ternary donor<sub>A</sub>-donor<sub>B</sub>-acceptor nanohybrids can give higher activities than binary donor-acceptor hybrids in some cases.


2019 ◽  
Author(s):  
Haofan Yang ◽  
Xiaobo Li ◽  
Reiner Sebastian Sprick ◽  
Andrew I. Cooper

A library of 237 organic binary/ternary nanohybrids consisting of conjugated polymers donors and both fullerene and non-fullerene molecular acceptors was prepared and screened for sacrificial photocatalytic hydrogen evolution. These donor-acceptor nanohybrids (DANHs) showed significantly enhanced hydrogen evolution rates compared with the parent donor or acceptor compounds. DANHs of <a></a><a>a polycarbazole</a>-based donor combined with a methanofullerene acceptor (PCDTBT/PC<sub>60</sub>BM) showed a high hydrogen evolution rate of 105.2 mmol g<sup>-1</sup> h<sup>-1</sup> under visible light (λ > 420 nm). This DANH photocatalyst produced 5.9 times more hydrogen than a sulfone-containing polymer (P10) under the same conditions, which is one of the most efficient organic photocatalysts reported so far. An apparent quantum yield of hydrogen evolution of 3.0 % at 595 nm was measured for this DANH. The photocatalytic activity of the DANHs, which in optimized cases reached 179.0 mmol g<sup>-1</sup> h<sup>-1</sup>, is attributed to efficient charge transfer at the polymer donor/molecular acceptor interface. We also show that ternary donor<sub>A</sub>-donor<sub>B</sub>-acceptor nanohybrids can give higher activities than binary donor-acceptor hybrids in some cases.


2019 ◽  
Author(s):  
Yan Wang ◽  
Sagar Udyavara ◽  
Matthew Neurock ◽  
C. Daniel Frisbie

<div> <div> <div> <p> </p><div> <div> <div> <p>Electrocatalytic activity for hydrogen evolution at monolayer MoS2 electrodes can be enhanced by the application of an electric field normal to the electrode plane. The electric field is produced by a gate electrode lying underneath the MoS2 and separated from it by a dielectric. Application of a voltage to the back-side gate electrode while sweeping the MoS2 electrochemical potential in a conventional manner in 0.5 M H2SO4 results in up to a 140-mV reduction in overpotential for hydrogen evolution at current densities of 50 mA/cm2. Tafel analysis indicates that the exchange current density is correspondingly improved by a factor of 4 to 0.1 mA/cm2 as gate voltage is increased. Density functional theory calculations support a mechanism in which the higher hydrogen evolution activity is caused by gate-induced electronic charge on Mo metal centers adjacent the S vacancies (the active sites), leading to enhanced Mo-H bond strengths. Overall, our findings indicate that the back-gated working electrode architecture is a convenient and versatile platform for investigating the connection between tunable electronic charge at active sites and overpotential for electrocatalytic processes on ultrathin electrode materials.</p></div></div></div><br><p></p></div></div></div>


2019 ◽  
Author(s):  
Haofan Yang ◽  
Xiaobo Li ◽  
Reiner Sebastian Sprick ◽  
Andrew I. Cooper

A library of 237 organic binary/ternary nanohybrids consisting of conjugated polymers donors and both fullerene and non-fullerene molecular acceptors was prepared and screened for sacrificial photocatalytic hydrogen evolution. These donor-acceptor nanohybrids (DANHs) showed significantly enhanced hydrogen evolution rates compared with the parent donor or acceptor compounds. DANHs of <a></a><a>a polycarbazole</a>-based donor combined with a methanofullerene acceptor (PCDTBT/PC<sub>60</sub>BM) showed a high hydrogen evolution rate of 105.2 mmol g<sup>-1</sup> h<sup>-1</sup> under visible light (λ > 420 nm). This DANH photocatalyst produced 5.9 times more hydrogen than a sulfone-containing polymer (P10) under the same conditions, which is one of the most efficient organic photocatalysts reported so far. An apparent quantum yield of hydrogen evolution of 3.0 % at 595 nm was measured for this DANH. The photocatalytic activity of the DANHs, which in optimized cases reached 179.0 mmol g<sup>-1</sup> h<sup>-1</sup>, is attributed to efficient charge transfer at the polymer donor/molecular acceptor interface. We also show that ternary donor<sub>A</sub>-donor<sub>B</sub>-acceptor nanohybrids can give higher activities than binary donor-acceptor hybrids in some cases.


2021 ◽  
Vol 7 (18) ◽  
pp. eabg2580
Author(s):  
Weiren Cheng ◽  
Huabin Zhang ◽  
Deyan Luan ◽  
Xiong Wen (David) Lou

Conductive metal-organic framework (MOF) materials have been recently considered as effective electrocatalysts. However, they usually suffer from two major drawbacks, poor electrochemical stability and low electrocatalytic activity in bulk form. Here, we have developed a rational strategy to fabricate a promising electrocatalyst composed of a nanoscale conductive copper-based MOF (Cu-MOF) layer fully supported over synergetic iron hydr(oxy)oxide [Fe(OH)x] nanoboxes. Owing to the highly exposed active centers, enhanced charge transfer, and robust hollow nanostructure, the obtained Fe(OH)x@Cu-MOF nanoboxes exhibit superior activity and stability for the electrocatalytic hydrogen evolution reaction (HER). Specifically, it needs an overpotential of 112 mV to reach a current density of 10 mA cm−2 with a small Tafel slope of 76 mV dec−1. X-ray absorption fine structure spectroscopy combined with density functional theory calculations unravels that the highly exposed coordinatively unsaturated Cu1-O2 centers could effectively accelerate the formation of key *H intermediates toward fast HER kinetics.


2015 ◽  
Vol 17 (31) ◽  
pp. 20331-20337 ◽  
Author(s):  
Marat Gafurov ◽  
Timur Biktagirov ◽  
Georgy Mamin ◽  
Elena Klimashina ◽  
Valery Putlayev ◽  
...  

The interplay of oppositely charged substitutions in the structure of hydroxyapatite nanopowders is investigated by pulsed electron paramagnetic resonance and ab initio density functional theory calculations.


Sign in / Sign up

Export Citation Format

Share Document