electrostatic modeling
Recently Published Documents


TOTAL DOCUMENTS

47
(FIVE YEARS 5)

H-INDEX

12
(FIVE YEARS 1)

Author(s):  
Kaoutar Hazim ◽  
Guillaume Parent ◽  
Stéphane Duchesne ◽  
Andrè Nicolet ◽  
Christophe Geuzaine

Purpose This paper aims to model a three-dimensional twisted geometry of a twisted pair studied in an electrostatic approximation using only two-dimensional (2D) finite elements. Design/methodology/approach The proposed method is based on the reformulation of the weak formulation of the electrostatics problem to deal with twisted geometries only in 2D. Findings The method is based on a change of coordinates and enables a faster computational time as well as a high accuracy. Originality/value The effectiveness of the adopted approach is demonstrated by studying different configurations related to the IEC 60851-5 standard defined for the measurement of the electrical properties of the insulation of the winding wires used in electrical machines.


Nanomaterials ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 1154
Author(s):  
Eberth A. Quezada-López ◽  
Zhehao Ge ◽  
Takashi Taniguchi ◽  
Kenji Watanabe ◽  
Frédéric Joucken ◽  
...  

Recent experimental advancements have enabled the creation of tunable localized electrostatic potentials in graphene/hexagonal boron nitride (hBN) heterostructures without concealing the graphene surface. These potentials corral graphene electrons yielding systems akin to electrostatically defined quantum dots (QDs). The spectroscopic characterization of these exposed QDs with the scanning tunneling microscope (STM) revealed intriguing resonances that are consistent with a tunneling probability of 100% across the QD walls. This effect, known as Klein tunneling, is emblematic of relativistic particles, underscoring the uniqueness of these graphene QDs. Despite the advancements with electrostatically defined graphene QDs, a complete understanding of their spectroscopic features still remains elusive. In this study, we address this lapse in knowledge by comprehensively considering the electrostatic environment of exposed graphene QDs. We then implement these considerations into tight binding calculations to enable simulations of the graphene QD local density of states. We find that the inclusion of the STM tip’s electrostatics in conjunction with that of the underlying hBN charges reproduces all of the experimentally resolved spectroscopic features. Our work provides an effective approach for modeling the electrostatics of exposed graphene QDs. The methods discussed here can be applied to other electrostatically defined QD systems that are also exposed.


e-Polymers ◽  
2019 ◽  
Vol 19 (1) ◽  
pp. 120-128
Author(s):  
Eya Hergli ◽  
Adel Aschi

AbstractThe effect of high salt concentration and pH on the binding of globular protein to polycation at different molar masses has been investigated by dynamic light scattering (DLS), turbidimetry and electrostatic modeling for the protein. In dilute concentration regime, DLS and pH titrations showed three remarkable pH transitions: pHc, the pH where soluble complexes of bovine serum albumin (BSA) and linear synthetic Polyethylenemine (PEI) are formed, pHc’ presents the end of primary soluble complex and pHφ presents the first appearance of microcoacervate droplets. All pH transitions increase with increasing NaCl concentration. The Adaptive Poisson-Boltzmann Solver (APBS) identify with precision the functional sites at the surface of BSA and shows that the strength of electrostatic interactions depends hugely on the variation of pH and ionic strength. At a very high concentration of salt, no remarkable effect on a mixture formed of a long chain of polycation and globular protein.


2015 ◽  
Vol 646 ◽  
pp. 012050 ◽  
Author(s):  
T A van Beek ◽  
J W Jansen ◽  
J van Duivenbode ◽  
E A Lomonova

Sign in / Sign up

Export Citation Format

Share Document