Novel chelating agent assisted dual doped spinel via sol–gel method for lithium rechargeable batteries

2016 ◽  
Vol 767 ◽  
pp. 141-152 ◽  
Author(s):  
R. Thirunakaran ◽  
Gil Hwan Lew ◽  
Won-Sub Yoon
2011 ◽  
Vol 412 ◽  
pp. 125-128 ◽  
Author(s):  
Ming Ya Li ◽  
Xiao Yan Wang ◽  
Cheng Li Ye ◽  
Feng Lin Xue

The Bi-2223 powders were fabricated by the sol-gel technique. Metal nitrates were used as starting materials, and ethylenediamineteracetic acid was used as chelating agent. The solution was heated until it turns to gel. Then the organic was removed at a temperature of 240°C, and the nitrite was removed at 500°C. The powder was calcined at different temperature, varying the dwelling time. Experimental results show that the main phase of samples after heat treatment is Bi-2212 phase.


2013 ◽  
Vol 113 ◽  
pp. 313-321 ◽  
Author(s):  
Nilüfer Kızıltaş-Yavuz ◽  
Markus Herklotz ◽  
Ahmed M. Hashem ◽  
Hanaa M. Abuzeid ◽  
Björn Schwarz ◽  
...  

2014 ◽  
Vol 895 ◽  
pp. 250-253 ◽  
Author(s):  
Siti Hajar Basri ◽  
Mohd Arif Mohd Sarjidan ◽  
Wan Haliza Abd Majid

ZnO thin films with and without Ni-doping were successfully deposited by sol-gel method with zinc acetate dihydrate as inorganic precursor, and nickel (II) acetate tetrahydrate as dopant. The solutions were prepared by dissolving zinc acetate and nickel (II) acetate in ethanol and diethanolamine (DEA) as its chelating agent. Thin films were fabricated by using spin-coating method on glass substrates. ZnO films were obtained by pre-heating and post-heating at 300 °C for 10 minutes and 500 °C for 1 h respectively. The films were analyzed by X-ray diffraction (XRD), UV-Vis transmittance and photoluminescence (PL). All samples exhibit high transparency in visible. Ni dopant does not alter so much ZnO structure, which due to the ion substitution between Ni and Zn. However, the Ni tends to create a dopant energy interlayer in ZnO energy band gap which cause significant change in PL intensity.


2016 ◽  
Vol 34 (2) ◽  
pp. 362-367 ◽  
Author(s):  
I. Yarici ◽  
M. Erol ◽  
E. Celik ◽  
Y. Ozturk

AbstractCerium substituted yttrium iron garnet (Ce0.2Y2.8Fe5O12; Ce-YIG) nanoparticles were produced via the sol-gel method from solutions of Ce-, Y- and Fe-based precursors, a solvent and a chelating agent. The solutions were dried at 200°C and heat treated at temperatures between 800 °C and 1400°C for 3 h in air. The effects of pH and annealing temperature on the structure, phase formation, magnetic properties and crystallite size were investigated. A cubic YIG phase was obtained for the sample annealed at 1400 °C. The presented results showed that the pH value of the starting solution affects the crystal size and consequently, the saturation magnetization.


2011 ◽  
Vol 25 (21) ◽  
pp. 2823-2839 ◽  
Author(s):  
Y. VAHIDSHAD ◽  
H. ABDIZADEH ◽  
H. R. BAHARVANDI ◽  
M. AKBARI BASERI

A sol-gel method is investigated to synthesize CuO – ZrO 2 nanoparticles as catalyst for hydrogen production from methanol. Finer precursor nanoparticles give rise to larger specific areas in catalyst which result in a high hydrogen production. The effects of some critical process parameters on the sol-gel synthesis of CuO – ZrO 2 nanoparticles are studied. These parameters are affected on synthesis of CuO – ZrO 2 when it is prepared with sol-gel method. Particle size and distribution are considered as the results. The parameters including the effect of calcination temperature, aging temperature, nature and concentration of catalyst (acidic or basic conditions), H 2 O /precursor molar ratio, and chelating agent that have been identified as most important, are focused. It is found that the calcination temperature strongly influenced the morphology and interaction between the active species and support, and hence the structure and catalytic performance. Nature and concentration of catalyst ( pH value), chelating agent, ( H 2 O /precursor) molar ratio and also aging temperature have influence on the nanoparticles. Thus, by controlling these factors, it is possible to vary the morphology and properties of the sol-gel-derived inorganic network over wide ranges. Morphology, particle size and distribution, phase evaluation, structure, and chemical analysis of the products are investigated by SEM, TEM, DTA/TG, XRD and EDX respectively.


Sign in / Sign up

Export Citation Format

Share Document