Depositing reduced graphene oxide on electroless plating Ni/organic polymer fibrous membrane for flexible supercapacitors

2019 ◽  
Vol 851 ◽  
pp. 113466
Author(s):  
Na Wang ◽  
Gaoyi Han ◽  
Hua Song ◽  
Yunzhen Chang ◽  
Wenjing Hou ◽  
...  
Author(s):  
Kaiming Guo ◽  
Firdoz Shaik ◽  
Jine Yang ◽  
Bin Jiang

Abstract Water splitting is considered as a potential sustainable and green technology for producing mass hydrogen and oxygen. A cost-effective self-supported stable electrocatalyst with excellent electrocatalytic performance in a wide pH range is greatly required for water splitting. This work reports on the synthesis and anchoring of Fe1CoxNiyP nanoparticles on vertically aligned reduced graphene oxide array (VrGO) via electroless plating. The catalytic activity of Fe1CoxNiyP nanoparticles is tuned finely by tailoring the cationic ratio of Co and Ni. Fe1Co2Ni1P/VrGO exhibits the lowest overpotential (58 and 110 mV) at 10 mA cm−2 and lowest tafel slope (31 and 33 mV dec−1) for hydrogen evolution reaction in 1.0 M KOH and 0.5 M H2SO4 respectively. Fe1Co1Ni2P/VrGO exhibits the lowest overpotential (173 mV) at 10 mA cm−2 with lowest tafel slope (47 mV dec-1) for oxygen evolution reaction. The enhanced performance of the electrocatalyst is attributed to improved electrical conductivity, synergistic effects and beneficial electronic states caused by the appropriate atomic ratio of Co and Ni in the bifunctional electrocatalyst. This study helps to explore the effect of variable cationic ratio in the cost-effective ternary iron group metal phosphides electrocatalysts to achieve enhanced electrocatalytic performance for water splitting in a wide pH range.


2019 ◽  
Vol 4 (31) ◽  
pp. 9165-9173 ◽  
Author(s):  
Ms. Le Yu ◽  
Shi‐Xi Zhao ◽  
Yi‐Feng Wang ◽  
Qi‐long Wu ◽  
Ms. Xiao‐Xiao Zheng ◽  
...  

Molecules ◽  
2020 ◽  
Vol 25 (12) ◽  
pp. 2793 ◽  
Author(s):  
Wen He ◽  
Bo Wu ◽  
Mengting Lu ◽  
Ze Li ◽  
Han Qiang

With the rapid development of portable and wearable electronic devices, self-supporting flexible supercapacitors have attracted much attention, and higher requirements have been put forward for the electrode of the device, that is, it is necessary to have good mechanical properties while satisfying excellent electrochemical performance. In this work, a facile method was invented to obtain excellent self-supported flexible electrode materials with high mechanical properties and outstanding electrochemical performance by combining cellulose nanofibrils (CNFs) and reduced graphene oxide (RGO). We focused on the effect of the ratio of the addition of CNFs and the formation process of the film on the electrochemical and mechanical properties. The results show that the CNFs/RGO12 (where the ratio of CNFs to GO is 1:2) film displayed outstanding comprehensive properties; its tensile strength and conductivity were up to 83 MPa and 202.94 S/m, respectively, and its CA value was as high as 146 mF cm−2 under the current density of 5 mA cm−2. Furthermore, the initial retention rate of the specific capacitance was about 83.7% when recycled 2000 times; moreover, its capacitance did not change much after perpendicular bending 200 times. Therefore, the films prepared by this study have great potential in the field of flexible supercapacitors.


2020 ◽  
Vol 336 ◽  
pp. 135743 ◽  
Author(s):  
Marjan Barakzehi ◽  
Majid Montazer ◽  
Farhad Sharif ◽  
Truls Norby ◽  
Athanasios Chatzitakis

Sign in / Sign up

Export Citation Format

Share Document