Population dynamics of the green-lipped mussel, Perna canaliculus, at various spatial and temporal scales in northern New Zealand

2006 ◽  
Vol 334 (2) ◽  
pp. 294-315 ◽  
Author(s):  
Andrea C. Alfaro
2010 ◽  
Vol 20 (7) ◽  
pp. 1926-1935 ◽  
Author(s):  
Perry de Valpine ◽  
Katherine Scranton ◽  
Clifford P. Ohmart

2021 ◽  
Vol 14 (4) ◽  
Author(s):  
Zarai Besma ◽  
Walter Christian ◽  
Michot Didier ◽  
Montoroi Jean Pierre ◽  
Hachicha Mohamed

2008 ◽  
Vol 1 (2) ◽  
pp. 81-88 ◽  
Author(s):  
C. Zevenbergen ◽  
W. Veerbeek ◽  
B. Gersonius ◽  
S. Van Herk

1995 ◽  
Vol 2 (1) ◽  
pp. 39 ◽  
Author(s):  
Doug P. Armstong ◽  
Ian G. McLean

One of the most common tools in New Zealand conservation is to translocate species to new locations. There have now been over 400 translocations done for conservation reasons, mainly involving terrestrial birds. Most translocations have been done strictly as management exercises, with little or no reference to theory. Nevertheless, translocations always involve some underlying theory, given that people must inevitably choose among a range of potential translocation strategies. We review theory relevant to translocations in the following areas: habitat requirements, susceptibility to predation, behavioural adaptation, population dynamics, genetics, metapopulation dynamics, and community ecology. For each area we review and evaluate the models that seem to underpin translocation strategies used in New Zealand. We report experiments testing some of these models, but note that theory underlying translocation strategies is largely untested despite a long history of translocations. We conclude by suggesting key areas for research, both theoretical and empirical. We particularly recommend that translocations be designed as experimental tests of hypotheses whenever possible.


2015 ◽  
Vol 120 ◽  
pp. 51-60 ◽  
Author(s):  
Yuval ◽  
Meytar Sorek–Hamer ◽  
Amnon Stupp ◽  
Pinhas Alpert ◽  
David M. Broday

Hydrobiologia ◽  
2008 ◽  
Vol 611 (1) ◽  
pp. 1-4 ◽  
Author(s):  
A. Razinkovas ◽  
Z. Gasiūnaitė ◽  
P. Viaroli ◽  
J. M. Zaldívar

2015 ◽  
Vol 19 (8) ◽  
pp. 3541-3556 ◽  
Author(s):  
M. Majerova ◽  
B. T. Neilson ◽  
N. M. Schmadel ◽  
J. M. Wheaton ◽  
C. J. Snow

Abstract. Beaver dams affect hydrologic processes, channel complexity, and stream temperature in part by inundating riparian areas, influencing groundwater–surface water interactions, and changing fluvial processes within stream systems. We explored the impacts of beaver dams on hydrologic and temperature regimes at different spatial and temporal scales within a mountain stream in northern Utah over a 3-year period spanning pre- and post-beaver colonization. Using continuous stream discharge, stream temperature, synoptic tracer experiments, and groundwater elevation measurements, we documented pre-beaver conditions in the first year of the study. In the second year, we captured the initial effects of three beaver dams, while the third year included the effects of ten dams. After beaver colonization, reach-scale (~ 750 m in length) discharge observations showed a shift from slightly losing to gaining. However, at the smaller sub-reach scale (ranging from 56 to 185 m in length), the discharge gains and losses increased in variability due to more complex flow pathways with beaver dams forcing overland flow, increasing surface and subsurface storage, and increasing groundwater elevations. At the reach scale, temperatures were found to increase by 0.38 °C (3.8 %), which in part is explained by a 230 % increase in mean reach residence time. At the smallest, beaver dam scale (including upstream ponded area, beaver dam structure, and immediate downstream section), there were notable increases in the thermal heterogeneity where warmer and cooler niches were created. Through the quantification of hydrologic and thermal changes at different spatial and temporal scales, we document increased variability during post-beaver colonization and highlight the need to understand the impacts of beaver dams on stream ecosystems and their potential role in stream restoration.


Sign in / Sign up

Export Citation Format

Share Document