Advanced oxidation processes for the removal of natural organic matter from drinking water sources: A comprehensive review

2018 ◽  
Vol 208 ◽  
pp. 56-76 ◽  
Author(s):  
Mika Sillanpää ◽  
Mohamed Chaker Ncibi ◽  
Anu Matilainen
2004 ◽  
Vol 4 (4) ◽  
pp. 113-119 ◽  
Author(s):  
C.A. Murray ◽  
S.A. Parsons

Advanced oxidation processes have been reported to have the potential to remove natural organic matter from source waters. Of these Fenton's reagent, photo-Fenton's reagent and titanium dioxide photocatalysis are the three most promising processes. Compared to conventional coagulation/flocculation processes they have higher removal efficiencies in terms of both dissolved organic carbon and UV254 absorbance. Under optimum reaction conditions all three remove over 80% dissolved organic carbon and 0% UV254 absorbance. In addition the enhanced removal of natural organic matter leads to a corresponding reduction in the formation of disinfection by-products following chlorination of the treated water. Advanced oxidation processes give enhanced removal of organic species ranging from low to high molecular weight while coagulation/flocculation is inefficient at removing low molecular weight species. One additional benefit is all three processes produce less residuals compared to conventional coagulation, which is advantageous as the disposal of such residuals normally contributes a large proportion of the costs at water treatment works.


2010 ◽  
Vol 10 (1) ◽  
pp. 51-57 ◽  
Author(s):  
R. Mosteo ◽  
N. Miguel ◽  
P. Ormad Maria ◽  
J. L. Ovelleiro

Any nonylphenol compounds found in water have to be removed since they are endocrine disruptors. In this study, natural water from the river Ebro fortified with nonylphenol compounds (4n-nonylphenol and technical nonylphenol) is used as a sample in order to simulate a real situation in drinking water treatment plants. The aim is to compare conventional disinfection with advanced oxidation processes (O3, O3/H2O2, O3/TiO2 and O3/H2O2/TiO2) used for the removal of nonylphenol compounds present in natural water. Furthermore, a study is carried out of the by-products (THMs) generated as a consequence of the presence of natural organic matter. Preoxidation by chlorine completely oxidizes 4n-nonylphenol and technical nonylphenol. It can be seen that the best of the advanced oxidation processes is the O3/H2O2, achieving an average oxidation of 55%, although the differences among the processes were not very significant. Furthermore, the use of post-chlorination guarantees the total removal of nonylphenol compounds.


Sign in / Sign up

Export Citation Format

Share Document