Landfill leachate treatment by a boron-doped diamond-based photo-electro-Fenton system integrated with biological oxidation: A toxicity, genotoxicity and by products assessment

2020 ◽  
Vol 264 ◽  
pp. 110473 ◽  
Author(s):  
Leandro Pellenz ◽  
Fernando Henrique Borba ◽  
Daniel Joner Daroit ◽  
Manoel Francisco Mendes Lassen ◽  
Suzymeire Baroni ◽  
...  
2011 ◽  
Vol 45 (2) ◽  
pp. 828-838 ◽  
Author(s):  
Ángela Anglada ◽  
Ane Urtiaga ◽  
Inmaculada Ortiz ◽  
Dionissios Mantzavinos ◽  
Evan Diamadopoulos

Water ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1686 ◽  
Author(s):  
Carolin Heim ◽  
Mohamad Rajab ◽  
Giorgia Greco ◽  
Sylvia Grosse ◽  
Jörg E. Drewes ◽  
...  

The focus of this study was to investigate the efficacy of applying boron-doped diamond (BDD) electrodes in an electrochemical advanced oxidation process, for the removal of the target compound diclofenac (DCF) in different water matrices. The reduction of DCF, and at the same time the formation of transformation products (TPs) and inorganic by-products, was investigated as a function of electrode settings and the duration of treatment. Kinetic assessments of DCF and possible TPs derived from data from the literature were performed, based on a serial chromatographic separation with reversed-phase liquid chromatographyfollowed by hydophilic interaction liquid chromatography (RPLC-HILIC system) coupled to ESI-TOF mass spectrometry. The application of the BDD electrode resulted in the complete removal of DCF in deionized water, drinking water and wastewater effluents spiked with DCF. As a function of the applied current density, a variety of TPs appeared, including early stage products, structures after ring opening and highly oxidized small molecules. Both the complexity of the water matrix and the electrode settings had a noticeable influence on the treatment process’s efficacy. In order to achieve effective removal of the target compound under economic conditions, and at the same time minimize by-product formation, it is recommended to operate the electrode at a moderate current density and reduce the extent of the treatment.


2016 ◽  
Vol 283 ◽  
pp. 76-88 ◽  
Author(s):  
Tânia F.C.V. Silva ◽  
Amélia Fonseca ◽  
Isabel Saraiva ◽  
Rui A.R. Boaventura ◽  
Vítor J.P. Vilar

2019 ◽  
Vol 79 (5) ◽  
pp. 921-928 ◽  
Author(s):  
F. Agustina ◽  
A. Y. Bagastyo ◽  
E. Nurhayati

Abstract Electro-oxidation using a boron-doped diamond (BDD) anode can be used as an alternative to leachate treatment. Aside from the hydroxyl radical, BDDs are capable of generating chloride and sulfate radical species that play significant roles in the oxidation of pollutants. This research investigated the role of Cl−:SO42− ions at molar ratios of 237:1, 4:1 and 18:1, and the influence of applied current density (i.e. 50, 75 and 100 mA cm−2) on the removal of organic and ammonium contaminants. The results show that current density had considerable effects on chemical oxygen demand (COD) and colour removal, while ion composition of Cl−:SO42− at pH 3, 5 and 8.5 (original pH) gave different effects on COD and ammonium removal. The pH had a significant effect on the COD removal at the ratio of 237:1, but showed no dramatic effect at the ratio of 18:1, giving ∼40% of COD removal at all pHs tested. This indicates that electro-oxidation at the ratio of 18:1 could be effectively conducted at a wide range of pH. Furthermore, the optimum ammonium removal was obtained at pH 8.5 with the ratio of 237:1. This process was found to be ineffective in increasing the biodegradability index of the leachate; instead, it exhibited mineralization of organic content.


2020 ◽  
Vol 46 (11) ◽  
pp. 4869-4881
Author(s):  
Arseto Yekti Bagastyo ◽  
Dian Novitasari ◽  
Ervin Nurhayati ◽  
Lucky Caesar Direstiyani

Sign in / Sign up

Export Citation Format

Share Document