Engine performance and emission characteristics of palm biodiesel blends with graphene oxide nanoplatelets and dimethyl carbonate additives

2021 ◽  
Vol 282 ◽  
pp. 111917
Author(s):  
L. Razzaq ◽  
M.A. Mujtaba ◽  
Manzoore Elahi M. Soudagar ◽  
Waqar Ahmed ◽  
H. Fayaz ◽  
...  
2021 ◽  
Vol 143 (12) ◽  
Author(s):  
A. Anderson ◽  
Amal M. Al-Mohaimeed ◽  
Mohamed Soliman Elshikh ◽  
T. R. Praveenkumar ◽  
M. Sekar

Abstract The current study emphasis on the engine performance and emission characteristics of rapeseed and soya biodiesel dispersion on a novel nanocatalyst at different concentrations of 25 ppm and 50 ppm. The results of this study were compared with those of conventional diesel at varying load conditions on a combustion ignition engine. An α-Fe2O3-doped Al2O3 was mixed with rapeseed biodiesel and soya biodiesel using an ultrasonicator at a frequency of 25 kHz. This study revealed that the incorporation of nanoparticles in biodiesel enhanced the performance of the blends by reducing the content of lignin and other unsaturated fatty acids. The improvement in the performance of the engine is mainly attributed to the high area-to-volume ratio of the nanocatalyst. Emissions of NOx. hydrocarbon and carbon monoxide during the combustion reaction increased significantly when nanoparticles were added at higher concentrations. Contrastingly, the emission of NOx in pure biodiesel was higher than that in conventional diesel. The addition of nanoparticles reduced CO emissions due to the presence of extra oxygen molecules and converted carbon monoxide into carbon dioxide. Soya seed biodiesel blends with 50 ppm nanoparticles showed better engine performance and emission characteristics as compared with all other blends.


Energies ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 4578 ◽  
Author(s):  
Fayaz Hussain ◽  
Manzoore Elahi M. Soudagar ◽  
Asif Afzal ◽  
M.A. Mujtaba ◽  
I.M. Rizwanul Fattah ◽  
...  

This study considered the impacts of diesel–soybean biodiesel blends mixed with 3% cerium coated zinc oxide (Ce-ZnO) nanoparticles on the performance, emission, and combustion characteristics of a single cylinder diesel engine. The fuel blends were prepared using 25% soybean biodiesel in diesel (SBME25). Ce-ZnO nanoparticle additives were blended with SBME25 at 25, 50, and 75 ppm using the ultrasonication process with a surfactant (Span 80) at 2 vol.% to enhance the stability of the blend. A variable compression ratio engine operated at a 19.5:1 compression ratio (CR) using these blends resulted in an improvement in overall engine characteristics. With 50 ppm Ce-ZnO nanoparticle additive in SBME25 (SBME25Ce-ZnO50), the brake thermal efficiency (BTE) and heat release rate (HRR) increased by 20.66% and 18.1%, respectively; brake specific fuel consumption (BSFC) by 21.81%; and the CO, smoke, and hydrocarbon (HC) decreased by 30%, 18.7%, and 21.5%, respectively, compared to SBME25 fuel operation. However, the oxides of nitrogen slightly rose for all the nanoparticle added blends. As such, 50 ppm of Ce-ZnO nanoparticle in the blend is a potent choice for the enhancement of engine performance, combustion, and emission characteristics.


Sign in / Sign up

Export Citation Format

Share Document